## Using a Distributed Object-Oriented Database Management System in Support of a High-speed **Network Intrusion Detection System Data Repository**

### **The Problem**

• Current cutting-edge Intrusion Detection Systems - in particular, those of the USAF - use relational database management systems (RDBMS) for long-term incident storage and correlation engine repositories

### Implications

- Network intrusion events are naturally represented as objects, BUT
- Relational databases are not well-suited for distributed systems and the rapid capture of object-form data from intrusion detection sensors

### **Research Hypothesis**

• A well-balanced distributed object-oriented database management system (DOODBMS) more naturally stores network incident data, resulting in significantly higher data storage rates without substantially increasing data retrieval overhead.

### **In English:** Replacing the RDBMS with a DOOBMS can remove the storage bottleneck without causing a retrieval bottleneck

### Results

- Demonstrated increased throughput performance with respect to RDBMS
- Demonstrated inconclusive, but seemingly minimal, impact to data retrieval performance
- Demonstrated the effective distribution of the repository to counter the single-point-of-failure problem
- Defined an object-oriented architecture and programming paradigm for future system development

**Results immediately generalize to other systems, including the deployed ASIM/CIDDS system** currently used operationally by the USAF

2Lt Phillip W. Polk, GCS-01M







### AFRL's AIDE System Overview

### AIDE After Re-Design to DOODBMS

Insertion Performance Comparison Query Performance Comparison





## Capt Paul D. Williams

**Recipient of the Class 01M** Commandant's Award for Best Thesis



### **The Challenge**

> INFOSEC Research Council: Intrusion/Misuse **Detection is the top Information Assurance (IA) priority** 

Office of the Assistant Secretary of Defense (OASD/C3I): Intrusion Detection leads the IA Hard **Problems list** 

> National Security Agency: The methodical, structured threat poses the most significant security risk to our **National Information Infrastructures** 



- Coordinated, distributed, reconnaissance and penetration attempts perpetrated by a patient, resourceful, structured adversary
- > The Master is the adversary's controlling computer
- The Agents and Slaves are computers usually innocent that have been "Trojanized" by an adversary or other agent
- > Current estimate of extant zombies exceeds hundreds of thousands > Master assigns selected slaves against specific targets - patience is key
  - > Individual probes are difficult to distinguish from noise
  - > Correlation of probes is nearly impossible
- > Master is well-hidden behind layers of concealment
- > Hierarchical structure is also ideal to initiate massive distributed denial of service (DDOS) attacks against Target Layer

**Sponsored By** 

**Defensive Information Warfare Branch Information Directorate, AFRL/IFGB Air Force Research Laboratory** 

# Towards a Computer Immune System for Detecting "Low and Slow" **Information System Attacks**

## **The Problem**

- Signature-based Intrusion Detection (ID) is reactive
  - Operation depends upon existing signatures
  - Signatures typically created in attack post-mortem
- Both signature creation and distribution are manual processes
- > Signature success depends on generality
  - > New attacks are often variations of old ones
  - Problem domain is always changing
  - Problem domain space is enormous
    - ▶  $1.94 \times 10^{84}$  possible events using just 29 packet features



### The Successes

- > Provided a formal framework for defining the intrusion detection problem
- > Performed simple, single-packet, network-based ID in the context of a CDIS
  - Warthog can separate self from non-self
  - Detects unknown attacks attacks that were not part of the training data In one test, detected over 98% of 2600+ attacks covering a large number of protocols and techniques
- > Defined a search process that couples the skills of human analysts with the raw searching power of an evolutionary algorithm
- Developed prototype user interface to display and guide search progress
- Provided a means of determining which features are important
  - The collection of successful antibodies will contain a variety of features
  - Induction over those antibodies should extract those features most useful
  - Focusing on those features should improve search and reduce data storage











## The Approach

- Computer Defense Immune System (CDIS)  $\Rightarrow$  Warthog
- Build upon AFIT's Computer Virus Immune System
- Integrate several different techniques
  - Computer immunology
  - Develop antibodies through negative selection and maturation
  - Computer virus and intrusion detection
  - > AFIT's multi-agent systems engineering (MaSE) methodology
  - Parallel and distributed computation
- > Utilize an Interactive Evolutionary Stochastic Search process Genetic Algorithms - coupled with human analyst for search guidance

## **Preliminary Observations**

- > Which features are important?
  - IP src, dest addresses
  - IP ID
  - IP TTL
  - TCP Sequence numbers
  - TCP Push, Ack, Syn flags
  - TCP src, dest ports

## **Biggest Contribution SOLID** Foundation for **Continued Research**