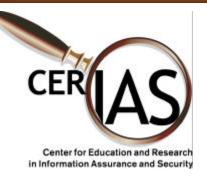


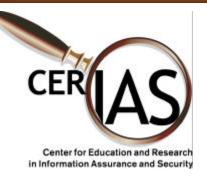
Purdue University

Center for Education and Research in Information Assurance and Security

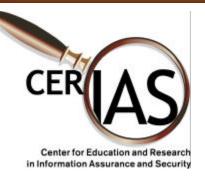


Association Rule Hiding

Elena Dasseni and Yucel Saygin


Contributors

M. Atallah, E. Bertino, A. Elmagarmid, V. Verykios M. Ibrahim

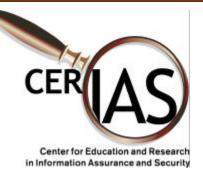

Introduction

- Restricting access to sensitive data and the "inference" problem.
- Security risks due to recent advances in data mining techniques.
- Association Rules (i.e., "90% of air-force basis having super-secret plane A, also have helicopters of type B").

Introduction(Contd.)

- Security and privacy threats from data mining and similar applications.
- Possible solutions to prevent data mining of significant knowledge:
 - Releasing only subsets of the source database
 - Augmenting the database
 - Disclosing an aggregated but not individual value

Association Rule Discovery


Let $I = \{i_1, i_2, \dots, i_m\}$ be a set of literals, called items.

A set of items $X \subset I$ is called an itemset.

Let D be a set of transactions, where each

transaction T is an itemset such that $T \subseteq I$.

A transaction T contains an itemset X, if $X \subseteq T$.

Association Rule Discovery

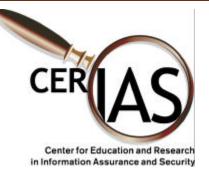
An association rule is an implication of the form

$$X \Longrightarrow Y \text{ where } X \subset I, Y \subset I, \text{ and } X \cap Y = 0.$$

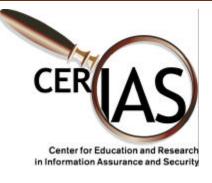

confidence=
$$\frac{|X \cup Y|}{|X|}$$
, and support= $\frac{|X \cup Y|}{N}$

Example Database

TID	Items
T1	ABCD
T2	ABC
T3	ACD

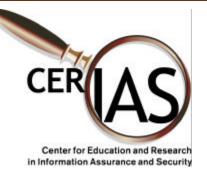


Frequent Itemsets	Support
AB	2
AC	3
AD	2
BC	2
CD	2
ABC	2
ACD	2

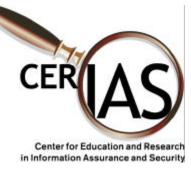

Optimal Sanitization is NP-hard

- Let D be the source database.
- Let R be a set of "significant" association rules that are mined from D.
- Let r_i be a "sensitive" rule in R.
- Transform D into D' so that all rules in R can still be mined from D' but r_{i.}
- Optimal sanitization is NP-Hard.
- Reduction from the NP-Hard problem of Hitting Set.

Hiding Methods

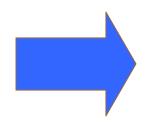

- Reduce the support of frequent itemsets containing sensitive rules
 - Cyclic Method
 - -Greedy Method
 - Isolated items and safe transactions
- Reduce the confidence or support of rules

Hiding Association Rules by using Confidence and Support

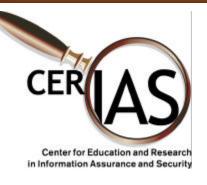

Assumptions

- We hide a rule by decreasing either its confidence or its support
- We decrease either the support or the confidence one unit at a time (we modify the value of one transaction at a time)
- We hide one rule at a time
- We consider only set of disjoint rules (rules supported by large itemsets that do not have any common item)

Hiding a rule X→Y by using Confidence and Support


- Conf(X→Y) = Supp(XY) / Supp(X)
- Strategies
 - Decreasing confidence of rule
 - Increasing the support of X in transactions not supporting Y
 - Decreasing the support of Y in transactions supporting both X and Y
 - Decreasing support of rule
 - Decreasing the support of the corresponding large itemset (XY)

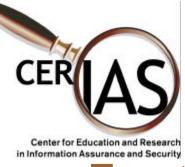
Strategies: basic idea


- Transactions viewed as lists
- One element for each item in DB

TID	Items
T1	ABC
T2	A

TID	A	В	С
T1	1	1	1
T2	1	0	0

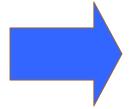
- Decreasing support of S = turning to 0 one item in one transaction supporting S
- Increasing support of S = turning to 1 one item in one transaction partially supporting S



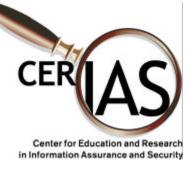
Example

TID	Items
T1	ABC
T2	ABC
T3	A C
T4	A
T5	В

MIN_SUPP = 1/5=20% MIN_CONF = 80%


AR	Conf
AB→C	100%
BC→A	100%

Example:hiding AB > C by increasing support of AB

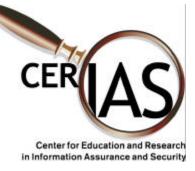

Turn to 1 the item B in transaction T4

TID	Items
T1	ABC
T2	ABC
T3	A C
T4	A
T5	В

TID	Items
T1	ABC
T2	ABC
T3	A C
T4	AB
T 5	В

AR	Conf
$AB \rightarrow C$	66%
BC→A	100%

Example: hiding AB \rightarrow C by decreasing support of C

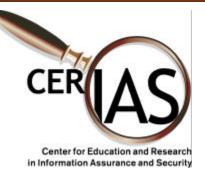

Turn to 0 the itemC in T1

TID	Items
T1	ABC
T2	ABC
T3	A C
T4	A
T5	В

TID	Items
T1	AB
T2	ABC
T3	A C
T4	A
T5	В

AR	Conf
$AB \rightarrow C$	50%
BC→A	100%

Example: hiding AB \rightarrow C by decreasing support of ABC


- Turn to 0 the item B in T1
- Turn to 0 the item C in T2

TID	Items
T1	ABC
T2	ABC
T3	A C
T4	A
T5	В

TID	Items
T1	A C
T2	AB
T3	A C
T4	A
T5	В

AR	Conf
$AB \rightarrow C$	0%
$BC \rightarrow A$	0%

Conclusions

- DM as a threat to DB security
- Need to limit the disclosure of sensitive information
- Optimal sanitization is NP-hard
- Developed heuristics to solve the problem
- The proposed methods are implemented and tested
- We plan to extend the problem of limiting the disclosure of sensitive information for different data mining techniques