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Abstract Suppose that Bob has a database D and that Alice wants to perform a
search query q on D (e.g., \is q in D?"). Since Alice is concerned about
her privacy, she does not want Bob to know the query q or the response
to the query. How could this be done? There are elegant cryptographic
techniques for solving this problem under various constraints (such as
\Bob should know neither q nor the answer to the query" and \Alice
should learn nothing about D other than the answer to the query"),
while optimizing various performance criteria (e.g., amount of commu-
nication).

We consider the version of this problem where the query is of the
type \is q approximately in D?" for a number of di�erent notions of
\approximate", some of which arise in image processing and template

1Portions of this work were supported by Grant EIA-9903545 from the National Science Foun-

dation, and by sponsors of the Center for Education and Research in Information Assurance

and Security.

1



2

matching, while others are of the string-edit type that arise in biological
sequence comparisons. New techniques are needed in this framework of
approximate searching, because each notion of \approximate equality"
introduces its own set of diÆculties; using encryption is more problem-
atic in this framework because the items that are approximately equal
cease to be so after encryption or cryptographic hashing. Practical pro-
tocols for solving such problems make possible new forms of e-commerce
between proprietary database owners and customers who seek to query
the database, with privacy.

We �rst present four secure remote database access models that are
used in the e-commerce, each of which has di�erent privacy requirement.
We then present our solutions for achieving privacy in each of these four
models.

1. INTRODUCTION

Consider the following real-life scenario: Alice thinks that she may
have some genetic disease, so she wants to investigate it further. She also
knows that Bob has a database containing known DNA patterns about
various diseases. After Alice gets a sample of her DNA sequence, she
sends it to Bob, who will then tell Alice the diagnosis. However, if Alice is
concerned about her privacy, the above process is not acceptable because
it does not prevent Bob from knowing Alice's private information{both
the query and the result.

This kind of situation, which is likely to arise as e-commerce develops,
motivates the following general problem formulation:

Secure Database Access (SDA) Problem: Alice has a string q, and Bob
has a database of strings T = ft1; : : : ; tNg; Alice wants to know whether
there exists a string ti in Bob's database that \matches" q. The \match"
could be an exact match or an approximate (closest) match. The problem
is how to design a protocol that accomplishes this task without revealing
to Bob Alice's secret query q or the response to that query.

Because of its practical importance and also because not much work
has been done for approximate pattern matching in the SDA context,
our work particularly focuses on approximate pattern matching.

The exact matching problem has been extensively considered in the
literature [19, 4, 16, 15, 20, 22, 21, 11], even though it can theoretically
be solved using the general techniques of secure multi-party computa-
tion [8]. The motivation for giving these specialized solutions to it is that
they are more eÆcient than those that follow from the above-mentioned
general techniques. This is also our motivation in considering approxi-
mate pattern matching even though it too is a special case of the general
secure multi-party computation problem. Unlike exact pattern matching
that produces \yes" and \no" answers, approximate pattern matching
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measures the di�erence between the two targets, and produces a score
to indicate how di�erent the two targets are. The metrics used to mea-
sure the di�erence usually are heuristic and are application-dependent.
For example, in image template matching [12, 17],

Pn
i=1(ai � bi)

2 andPn
i=1 jai � bij are often used to measure the di�erence between two se-

quences a and b. In DNA sequence matching [13], edit distance [1, 5]
makes more sense than the above measurements; edit distance measures
the cost of transforming one given sequence to another given sequence,
and its special case, longest common subsequence is used to measure how
similar two sequences are.
Solving approximate pattern matching problems within the SDA frame-

work is quite a nontrivial task. Consider the
Pn

i=1 jai � bij metric as
an example. The known PIR (private information retrieval) techniques
[19, 4, 16, 15, 20, 22, 21, 11] can be used by Alice to eÆciently access
each individual bi without revealing to Bob anything about which bi (or
even which b) Alice accessed (more on this later), but doing this for each
individual bi and then calculating

Pn
i=1 jai� bij violates the requirement

that Alice should know the total score
Pn

i=1 jai � bij without knowing
anything other than that score, i.e., without learning anything about the
individual bi values. Using a general secure multi-party computation
protocol typically does not lead to an eÆcient solution. The goals of
our research, and the results presented in this paper, are �nding eÆ-
cient ways to do such approximate pattern matchings without disclosing
private information.
The practical motivations of remote database access do not all point

to the model we described in the above SDA formulation. For exam-
ple, in some situations, Bob's database could be proprietary whereas in
some others it could be public (in either case the protocol should reveal
nothing to Bob about Alice's query). The \proprietary" nature of a
database might make the solution more diÆcult because Alice should
not be able to know more information than the response to her query.
There is also another practical framework, within which Alice uses Bob
to store a (suitably disguised) version of her private database (a form
of outsourcing), and for such a framework the solutions could be quite
di�erent. Based on these variants of the problem, we have investigated
four SDA models, and de�ned a class of SDA problems for each model
according to the metrics we use for approximate pattern matching. Of
course the diÆculties of the problems are not the same for the di�erent
metrics, and so far we have solved a subset of those problems. A sum-
mary of our results is listed below (the results are stated more precisely
in Section 4, and the models are de�ned in Section 3 { in the meantime
see Figure 1 in that section for a summary of each model).
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For the Private Information Matching Model, we have a solution
to the approximate pattern matching based on the

Pn
i=1(ai � bi)

2

metric with O(n � N) communication cost, where n is the length
of each string and N is the number of strings in the database.

For the Private Information Matching Model, We also have a solu-
tion to the approximate pattern matching based on the

Pn
i=1 jai�

bij metric using a Monte Carlo technique; the solution gives an
estimated result, and it has O(n � W � N) communication cost,
where W is a parameter that a�ects the accuracy of the estimate.

For the Private Information Matching Model, if we assume that the
alphabet is known to the involved parties and its size is �nite, we
have a solution to approximate pattern matching based on generalPn

i=1 f(ai; bi) metrics, hence the solutions for the special cases ofPn
i=1 jai � bij,

Pn
i=1(ai � bi)

2, and
Pn

i=1 Æ(ai; bi) (where Æ(x; y) is
1 if x = y and 0 otherwise). These solutions have O(m � n � N)
communication cost, where m is the number of the symbols in the
alphabet. In many cases, m is small. For instance, m is four in
DNA databases.

For the Secure Storage Outsourcing Model, we have a practical so-
lution to approximate pattern matching based on the

Pn
i=1(ai�bi)

2

metric. The solution is practical because its O(n) communication
cost does not depend on N .

For the Secure Storage Outsourcing and Computation Model, we
also have a practical solution to approximate pattern matching
based on the

Pn
i=1(ai � bi)

2 metric. This solution is practical
because of its communication cost is O(n2).

Motivation

Why do we care about the privacy of a database query? In the ex-
ample used earlier in this section, if a match is found in the database,
Bob immediately knows that Alice has such a disease; even worse, after
receiving Alice's DNA sequence, Bob can derive much else about Alice,
such as other health problems that Alice might have. If Bob is not trust-
worthy, Bob could disclose the information about Alice to other parties,
and Alice might have diÆculty getting employment, insurance, credit,
etc. But even if Alice trusts Bob, and Bob has no intention of disclosing
Alice's private information, Bob himself might prefer that Alice's query
be kept private out of liability concerns: If Bob knows Alice's DNA in-
formation, and that information is accidentally disclosed (perhaps by a
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disgruntled employee of Bob's, or after a system break-in), Bob might
face an expensive lawsuit from Alice. From this perspective, a trusted
Bob will actually prefer not to know either Alice's query or its response.
With the growth of the Internet, more and more e-commerce trans-

actions like the above will take place. There are already DNA pattern
databases, public databases about diseases, patent databases, and in
the future we may see many more commercial databases and the re-
lated database access services, such as �ngerprint databases, signature
databases, medical record databases, and many more. Privacy will be a
major issue, and assuming the trustworthiness of the service providers,
as is done today, is risky; therefore protocols that can support remote
access operations while protecting the client's privacy are of growing
importance.
One of the fundamental operations behind the queries described in

the examples above is pattern matching. Therefore, the basic problem
that we face is how to conduct pattern matching operations at the server
side while the server has no knowledge of the client's actual query (or
the response to it). In some database access situations, exact pattern
matching is used, such as query by name, query by social security num-
ber, etc. However, in many other situations, exact pattern matching
is unrealistic. For instance, in �ngerprint matching, even if two �nger-
prints come from the same �nger, they are unlikely to be exactly the
same because there is some information loss in the process of deriving
an electronic form (usually a complex data structure of features) from
a raw �ngerprint image. Similarly in voice, face, and DNA matching;
in these and many other situations, exact matching is not expected and
some form of approximate pattern matching is more useful.

Background Information on Secure Multi-party Com-
putation

The above problem is a special case of the general secure multi-party
computation problem [28]. Generally speaking, a multi-party compu-
tation problem deals with computing any probabilistic function on any
input, in a distributed network where each participant holds one of the
inputs, ensuring independence of the inputs, correctness of the compu-
tation, and that no more information is revealed to a participant in the
computation than can be computed from that participant's input and
output [10]. Other examples of such computations include: elections
over the Internet, electronic bidding, joint signatures, and joint decryp-
tion. The history of the multi-party computation problem is extensive
since it was introduced by Yao [28] and extended by Goldreich, Micali,
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and Wigderson [23], and by many others: GoldWasser [10] predicts that
\the �eld of multi-party computations is today where public-key cryp-
tography was ten years ago, namely an extremely powerful tool and
rich theory whose real-life usage is at this time only beginning but will
become in the future an integral part of our computing reality".

Goldreich states in [8] that the general secure multi-party computation
problem is solvable in theory. However, he also points out that using the
solutions derived by these general results for special cases of multi-party
computation, can be impractical; special solutions should be developed
for special cases for eÆciency reasons.

One of the well-known special cases of multi-party computation is
the Private Information Retrieval (PIR) problem: The problem consists
of a client and server. The client needs to get the ith bit of a binary
sequence from the server without letting the server know the i; the
server does not want the client to know the binary sequence either. A
solution for this problem is not diÆcult; however an eÆcient solution, in
particular a solution with small communication cost, is not easy. Studies
[19, 4, 16, 15, 20, 22, 21, 11] have shown that one can design a protocol
to solve the PIR problem with much better communication complexity
than by using the general theoretical solutions. Pattern matching is
another such speci�c computation, and the recent progress in the PIR
problem motivated us to speculate that there exist eÆcient solutions for
this particular kind of secure multi-party computation as well.

Secure Multi-party Protocol vs. Anonymous Com-
munication Protocol

Anonymous communication protocols [24, 9] were designed to achieve
somewhat related goals, so why not use them? Anonymity techniques
help to hide the identity of the information sender, rather than the in-
formation being sent. For example, when people browse the web, they
can use anonymous communication techniques to keep their identities
secret, but the web query usually is not secret because the web server
has to know the query in order to send a reply back. In situations where
the identity of the information sender needs to be protected, anonymous
communication protocols are appropriate. However, there are situations
where anonymous communication protocols cannot replace secure multi-
party computation protocols. First, certain types of information intrin-
sically reveal the identity of someone related to the information (e.g.,
social security number). Secondly, in some situations, it is the informa-
tion itself that needs to be protected, not the identity of the information
sender. For instance, if Alice has an invention, she has to search if such
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an invention is new before she �les for a patent. When conducting the
query, Alice may want to keep the query private (perhaps to avoid part
of her idea being stolen by people who have access to her query); she does
not care whether her identity is revealed. Thirdly, in certain situations,
one has to be a registered member in order to use the database access
service; this makes hiding a user's identity diÆcult because the user has
to register and login �rst, which might already disclose her identity.
Furthermore, most of the known practical anonymous protocols, such

as Crowds [24], Onion routing [9] and anonymizer.com, use one or sev-
eral trusted third parties. In our secure multi-party computation proto-
cols, we do not use a trusted third party; when a third party is used, we
generally assume that the third party is not trusted, and should learn
nothing about either Alice's query, or Bob's data, or the response to the
query.
Therefore anonymity does not totally solve our problems, and cannot

replace secure multi-party computation. Rather, by combining anonymity
techniques with secure multi-party computation techniques, one can
achieve better overall privacy more eÆciently.

2. RELATED WORK

As Goldwasser points out in [10], in the 1980's the focus of research
was to show the most general result possible, yielding multi-party pro-
tocol solutions for any probabilistic function. Much of the current work
is to focus on eÆcient and non-interactive solutions to special impor-
tant problems such as joint-signatures, joint-decryption, and secure and
private database access.
Among various multi-party computation problems, the Private Infor-

mation Retrieval (PIR) problem has been widely studied; it is also the
problem most related to what we present in this paper (although here
we use none of the elegant techniques for PIR that are found in the liter-
ature, for reasons we explained earlier in this paper). The PIR problem
consists of devising a protocol involving a user and a database server,
each having a secret input. The database's secret input is called the data
string, an N -bit string B = b1b2 : : : bN . The user's secret input is an in-
teger i between 1 and n. The protocol should enable the user to learn bi
in a communication-eÆcient way and at the same time hide i from the
database. The trivial solution is having the database send an encryp-
tion of the entire string B to the user, with an O(n �N) communication
complexity. Much work has been done for reducing this communication
complexity [19, 4, 16, 15, 20, 22, 21, 11].
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Chor et al. point out that a major drawback of all known PIR schemes
is the assumption that the user knows the physical address of the sought
item [7], whereas in the current database query scenario the user typi-
cally holds a keyword and the database internally converts this keyword
into a physical address. To solve this problem, Chor et al. propose a
scheme to privately access data by keywords [7]. The di�erence between
the problem studied in Chor's paper and the problems in our paper is
that we extend the problem to cover approximate pattern matching.

Song et al. propose a scheme to conduct searches on encrypted data
[27]. In that framework, Alice has a database, and she has to store
the database in a server controlled by Bob; how could Alice query her
database without letting Bob know the contents of the database or the
query? Here we primarily focus on extending the problem to also cover
approximate pattern matching.

3. FRAMEWORK

3.1. MODELS

Remote database access has many variants. In some e-commerce mod-
els, Bob's database is private while in some other models, it is public. In
the latter case, there is no requirement to keep the database secret from
Alice; however, the privacy of Alice's query still needs to be preserved.
In other e-commerce models, Bob hosts Alice's (encrypted/disguised)
database while supporting queries from Alice and other customers, in
which case Bob should know neither the database nor the queries.

Private Database
Bob’s

BobAlice
query

reply

Public Database

Alice Bob
query

reply

(c) SSO Model

Private Database
Alice’s

BobAlice
query

reply

(d) SSCO Model

Private Database
Alice’s

BobAlice

Carl

outsourcing

query

rep
ly

pay for
the service

(a) PIM Model (b) PIMPD Model

Figure 1 Models
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From the various ways that remote database access is conducted, we
distinguish four di�erent e-commerce models, all of which require cus-
tomers' privacy:

PIM: Private Information Matching Model (Figure 1.a)

PIMPD: Private InformationMatching from Public Database Model
(Figure 1.b).

SSO: Secure Storage Outsourcing Model (Figure 1.c).

SSCO: Secure Storage and Computing Outsourcing Model (Figure
1.d).

For the sake of convenience, we will use Match() to represent the
pattern matching function, which includes both exact pattern matching
and approximate pattern matching.

Private Information Matching Problem (PIM) Alice has a string
x, and Bob has a database of strings T = ft1; : : : ; tNg; Alice wants to
know the result of Match(x; T ). Because of the privacy concern, Alice
does not want Bob to know the query x or the response to the query;
Bob does not want Alice to know any string in the database except for
what can be derived from the reply. Furthermore, Bob wants to make
money from providing such a service, therefore Alice should not be able
to conduct the querying by herself; in other words, every time Alice
wants to perform such a query, she has to contact Bob, otherwise she
cannot get the correct answer.

Private Information Matching from Public Database Problem
(PIMPD) Bob has a database of strings T = ft1; : : : ; tNg, whose
contents are public knowledge. Alice has a query x, and she wants to
know the result of Match(x; T ) without disclosing to Bob either her
query x or the response to it.
This problem is di�erent from the PIM problem: in the PIM problem,

Bob does not allow Alice to know any information about the database
except for what can be derived from the reply. In the PIMPD problem,
since the database contains only public knowledge, there is no need to
prevent Bob from letting Alice know more about the contents of the
database than the strict answer to her query (although Bob's doing so
may result in unnecessary communication).

Secure Storage Outsourcing Problem (SSO) Alice has a database
of strings T = ft1; : : : ; tNg, but she does not have enough storage for



10

the large database, so she outsources her database (suitably disguised{
more on this later) to Bob, who provides enough storage for Alice. Fur-
thermore, from time to time, Alice needs to query her database and
retrieves the information that matches her query, i.e., Alice wants to
know Match(x; T ) for her query x. As usual, Alice wants to keep the
contents of both the database and the query secret from Bob.

Secure Storage and Computing Outsourcing Problem (SSCO)
The SSCO problem is an extension of the SSO problem. Whereas only
Alice queries her database in the SSO problem, in the SSCO model the
database will also be queried by other clients of Alice. More speci�cally,
in the SSCOmodel, Alice outsources her database to Bob, and she wants
the database to be available to anyone who is willing to pay her for the
database access service. When a client accesses the database, neither
Alice nor Bob should know the contents of the query. Moreover, Alice
wants to charge the clients for each query they have submitted, so the
client should not be able to get the correct query result if Alice is not
aware of the query's existence.

Since Bob can pretend to be a client, the solutions of the SSCO prob-
lem should be secure even if Bob can collude against Alice with any
client. However, the SSO problem does not have such a concern because
the only client is Alice herself.

3.2. NOTATION

For each model, there is a family of problems. We will use the follow-
ing notations to represents each speci�c problem:

M/Exact: Exact Pattern Matching problem in model M .

M/Approx: Approximate Pattern Matching problem in modelM .

{ M/Approx/f : use
Pn

k=1 f(ak; bk) metric to measure the dis-
tance between two strings, where f is a general function.

{ M/Approx/Æ: use
Pn

k=1 Æ(ak; bk) metric to measure the dis-
tance between two strings, where Æ is the Kronecker symbol:
Æ(x; y) = 0 if and only if x = y and 1 otherwise.

{ M/Approx/Abs: use
Pn

k=1 jak � bkj metric to measure the
distance between two strings.

{ M/Approx/Squ: use
Pn

k=1(ak � bk)
2 metric to measure the

distance between two strings.

{ M/Approx/Edit:
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� M/Approx/Edit/String: use the string editing criterion
[5] to measure the distance between two strings.

� M/Approx/Edit/Tree: use the tree editing criterion to
measure the distance between two trees.

TheM/Exact problem has been studied extensively in certain model,
such as PIM and SSO, but the M/Approx problem has not. Our results
deal mostly with the M/Approx problem.

4. OUR RESULTS

4.1. PRELIMINARY

Protocol for scalar (and other) products Recall that the scalar
product of two vectors ~x = (x1; :::; xn) and ~y = (y1; :::; yn) is:
~x � ~y =

Pn
k=1 xk � yk.

We describe a protocol for Alice and Bob to compute the scalar prod-
uct of Alice's vector ~x and Bob's vector ~y using an untrusted third party
Ursula. Neither Alice nor Bob should learn anything about the other
party's input (other than what can be derived from knowing ~x � ~y), and
Ursula should learn nothing about either ~x or ~y. This protocol will later
serve as a building block for other protocols. Essentially the same pro-
tocol also solves the asymmetric version of the problem, in which only
Alice is to know ~x � ~y.

1 Alice and Bob jointly generate two random numbers r and r0.

2 Alice and Bob jointly generate two random vectors ~R, ~R0 (of size
n).

3 Alice sends ~w1 = ~x+ ~R and s1 = ~x � ~R0 + r to Ursula.

4 Bob sends ~w2 = ~y + ~R0 and s2 = ~R � (~y + ~R0) + r0 to Ursula.

5 Ursula computes v = ~w1 � ~w2�s1�s2 and gets v = ~x�~y�(r+r0); she
then send the result to Alice and Bob. Note. In the asymmetric
version of the problem (in which only Alice is to know ~x �~y) Ursula
does not send anything to Bob in this step.

6 Alice and (in the symmetric version of the problem) Bob then get
~x � ~y = v + (r + r0).

Note that the communication complexity of the above is linear in the
size of the inputs, i.e., it is O(n).
Although only the scalar product case is needed later in this paper,

it should be clear that other operations than scalar product can be car-
ried out using suitably modi�ed versions of the above protocol. These
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include matrix product, in which case Alice and Bob have matrices and
R;R0; r; r0 are random matrices. They also include the convolution prod-
uct of two vectors, in which case R;R0; r; r0 are random vectors. This
could potentially be useful in other contexts.

4.2. PIM/APPROX

Except for the research on the general secure multi-party computa-
tion problem, this speci�c problem has not been studied in the literature.
Unless otherwise speci�ed, we assume the alphabet used in the follow-
ing solution to be prede�ned and its size to be �nite. This assumption
is quite reasonable in many situations; for instance, DNA sequences
use a �xed alphabet of four symbols. Under this assumption, we can
solve the PIM/Approx/f problem. However, because the way to calcu-
late edit distance cannot be represented in the form

Pn
k=1 f(ak; bk), the

PIM/Approx/Edit problem is not a special case of the PIM/Approx/f
problem. We also have a solution for PIM/Approx/Edit/String prob-
lem, but because of its complexity and space limitation, we will leave
the solution to the journal version of this paper.

In some other situations, the above �nite alphabet assumption does
not apply. For instance, �ngerprint, image and voice patterns use real
numbers instead of characters from a known �nite alphabet. The above-
mentioned solution for the PIM/Approx/f problem cannot be used any-
more, however by exploiting the mathematical property of

Pn
i=1(ai�bi)

2,
we have come up with a solution for the PIM/Approx/Squ problem for
in�nite alphabet after introducing an untrusted third party who does not
know the inputs from either of the two parties and learns nothing about
them (or about the query, or the answer to it). We also have a solution
to the PIM/Approx/Abs problem using a Monte Carlo technique. All
of these are given below.

4.2.1 PIM/Approx/Squ Protocol. Suppose that Bob has
a database T = ft1; :::; tNg, and assume the length of each string ti is
n; Alice wants to know the ti 2 T that most closely matches a query
x = x1:::xn based on the PIM/Approx/Squ metric. The requirement is
that Bob should not know x or the result, and Alice should not be able
to learn more information than the reply from Bob.

We propose a protocol to compute the matching score using an un-
trusted third party, Ursula. Our assumption here is that Ursula will
not conspire with either Alice or Bob. However, the third party is not
fully trusted: Ursula should not be able to deduce either x or T , or the
�nal matching score s. This protocol works for both �nite and in�nite
alphabet.
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Let ~x = (�2x1; :::;�2xn; 1); for each ti = yi;1:::yi;n, let ~zi = (yi;1; :::; yi;n;Pn
k=1 y

2
i;k), Observe that:

nX

k=1

(xk � yi;k)
2 = ~x � ~zi +

nX

k=1

x2k:

Since
Pn

k=1 x
2
k is a constant, we can use ~x�~zi instead of

Pn
k=1(xk�yi;k)

2

to �nd the closest match. After we get the closest match, Alice can
calculate the actual score by adding

Pn
k=1 x

2
k.

Protocol

1 Alice and Bob jointly generate two random numbers r and r0.

2 For each ti 2 T , repeat the next �ve sub-steps, in which ti =
yi;1:::yi;n, ~x = (�2x1; :::;�2xn; 1).

(a) Bob constructs ~zi = (yi;1; :::; yi;n;
Pn

k=1 y
2
i;k),

(b) Alice and Bob jointly generate two random vectors ~R, ~R0 (of
size n+ 1).

(c) Alice sends ~w1 = ~x+ ~R and s1 = ~x � ~R0 + r to Ursula.

(d) Bob sends ~w2 = ~zi + ~R0 and s2 = ~R � (~zi + ~R0) + r0 to Ursula.

(e) Ursula computes vi = ~w1 � ~w2� s1� s2 and gets the resulting
vi = ~x � ~zi � (r + r0).

3 Ursula computes score0 = minNi=1 vi, and sends the resulting score0

to Alice.

4 Alice computes score = score0 +
Pn

k=1 x
2
k + (r + r0), which is the

closest match between x and any ti 2 T .

The random vectors ~R and ~R0 are used to disguise Alice's and Bob's
data; the random numbers r and r0 are used to disguise the query results
and the intermediate results. The communication cost is O(n �N).

4.2.2 PIM/Approx/Abs Protocol. First, we will present a
Monte Carlo technique for Alice and Bob to calculate jxk � ykj (xk is
Alice's secret input and yk is Bob's), and then use it as a building block
to compute

Pn
k=1 jxk � ykj. The protocol involves an untrusted third

party, Ursula, who learns nothing. The protocol works for both �nite
and in�nite alphabets. Assume that 0 < xk � U and 0 < yk � U for
some number U . The protocol for jxk � ykj is as follows (where W is
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a parameter that a�ects the accuracy of the estimate, and counter = 0
initially):

1 Alice generates a random number Rk, and then generates a se-
quence of W � Rk random i.i.d. numbers, each uniformly over
(0::U ].

2 Alice randomly replaces half of these W �Rk numbers with their
negative values.

3 Alice \splices" Rk zeroes into random positions of the above se-
quence of W � Rk numbers, resulting in a new sequence S of W
numbers.

4 Alice then sends S to Bob.

5 For each number s from S, if s = 0, Alice sends 1 to Ursula; if s > 0
then Alice sends 1 to Ursula if jsj � xk and sends 0 otherwise; if
s < 0 then Alice sends 0 to Ursula if jsj � xk and sends 1 otherwise.

6 For each number s from S, if s = 0, Bob sends 0 to Ursula; if s > 0
then Bob sends 1 to Ursula if jsj � yk and sends 0 otherwise; if
s < 0 then Bob sends 0 to Ursula if jsj � yk and sends 1 otherwise.

7 Ursula increases counter by 1 if the values she receives from Alice
and Bob are di�erent.

8 Ursula computes score = counter � U
W
, which is an unbiased esti-

mate of jxk � ykj+Rk �
U
W
.

Because of Rk, Ursula does not know the actual distance between xk
and yk, and because of the negative numbers among those W random
numbers, Ursula cannot �gure out whether xk > yk or xk < yk.

Now, let us see how to use the above protocol to compute
Pn

k=1 jxk�
yi;kj, where x = x1:::xn and ti = yi;1:::yi;n:

1 Alice generates a random number R.

2 For each ti 2 T , suppose ti = yi;1:::yi;n and repeat the next three
sub-steps:

(a) counter = 0.

(b) For each k = 1; :::; n, Alice, Bob and Ursula use the above pro-
tocol to compute jxk�yi;kj. The random numbersRi;1; :::; Ri;n

used in the above protocol are generated by Alice, such thatPn
k=1Ri;k = R.
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(c) Ursula computes scorei = counter � U
W
, which is an unbiased

estimate of
Pn

k=1 jxk�yi;kj +
Pn

k=1Ri;k�
U
W

=
Pn

k=1 jxk�yi;kj

+R � U
W
.

3 Ursula computes score0 = minNi=1 scorei, and sends score0 to Alice.

4 Alice computes score = score0�R � U
W

and gets the closest match
between x and any ti 2 T .

The communication complexity is O(n � W � N). The analysis will
given in the full version of this paper.

4.2.3 PIM/Approx/f protocol. If the alphabet is prede-
�ned and its size is �nite, we can solve a general problem{computing
f(xk; yk). However, we cannot directly use this protocol n times to com-
pute
Pn

k=1 f(xk; yk) because that would reveal each individual f(xk; yk)
result. We will present the protocol for computing f(xk; yk) here, and
then in the following sub-section, we will discuss how to use it as a build-
ing block to compute

Pn
k=1 f(xk; yk) without revealing any individual

f(xk; yk).
Suppose Alice has an input xk; Bob has an input yk; Alice wants to

know the result of f(xk; yk) without revealing xk and the result to Bob,
and Bob does not want to reveal his yk to Alice. After presenting a
solution to this problem, we later use it as a building block to construct
solutions to other problems.

f-function Protocol We assume the encryption methods used below
are commutative.

1 Bob computes f(�i; yk) for each �i 2 X, where X is the �nite
(known) alphabet. Let m be the size of X.

2 Bob chooses a secret key k, computes Ek(f(�i; yk)) for each �i 2
X, and sends to Alice the m results.

3 Alice chooses one from Ek(f(�i; yk)), i = 1 : : : m, such that �i =
xk. This can be done because Bob sent the m encrypted results in
order.

4 Alice chooses a secret key k0, computes Ek0(Ek(f(xk; yk))), and
sends it back to Bob.

5 Because of the commutative properties ofEk0 andEk, Ek0(Ek(f(xk;
yk))) is equivalent to Ek(Ek0(f(xk; yk))), which could be decrypted
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to Ek0(f(xk; yk)) by Bob. Bob sends the result Ek0(f(xk; yk)) to
Alice.

6 Alice gets f(xk; yk) by decrypting Ek0(f(xk; yk)).

The technique used above is similar to the standard oblivious transfer
protocol; it protects the privacy of the inputs from both parties without
introducing a third-party. The communication cost is O(m), where m is
the size of the alphabet.

PIM/Approx/f Protocol Now, let us see how to securely compute
minNi=1(

Pn
k=1 f(xk; yi;k)). As we discussed above, we cannot run the

above f -function protocol n times to get
Pn

k=1 f(xk; yi;k). In the fol-
lowing protocol, we will use a disguise technique to hide each individual
result of f(xk; yi;k).

For each ti = yi;1:::yi;n, and for each k = 1; :::; n, let fi;k(xk; yi;k) =
f(xk; yi;k)+Ri;k, where Ri;k is a random number, the following protocol
shows how A and B calculate minNi=1

Pn
k=1 f(xk; yi;k),

1 Bob generates a random number R then sends R to Alice.

2 For each ti = yi;1; :::; yi;n, repeat the next �ve sub-steps:

(a) Bob constructs fi;k(xk; yi;k) = f(xk; yi;k)+Ri;k for k = 1; :::; n,
where Ri;1; :::; Ri;n are n random numbers.

(b) Alice and Bob use the f -function protocol to compute fi;k(xk;
yi;k), for each k = 1; :::; n.

(c) Alice sends
Pn

k=1 fi;k(xk; yi;k) to Ursula.

(d) Bob sends
Pn

k=1Ri;k �R to Ursula.

(e) Ursula computes scorei =
Pn

k=1 fi;k(xk; yi;k)� (
Pn

k=1Ri;k �
R) =

Pn
k=1 f(xk; yi;k) +R.

3 Ursula computes score0 = minNi=1 scorei, and sends score
0 to Alice.

4 Alice compute score = score0�R, thus getting the actual distance
between x and the closest ti in the database T .

Although Alice knows each individual fi;k(xk; yi;k), she does not know
the actual value of f(xk; yi;k) because of Ri;k. Similarly, because of
R, Ursula does not know the actual score of the closest match. The
communication cost of the protocol is O(m � n �N), where m is the size
of the alphabet, n is the length of each pattern, and N is the size of the
database. In many cases, m is quite small. For instance, m is four in
DNA databases.
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Because jxk�ykj, (xk�yk)
2 and Æ(xk; yk) functions are special cases of

f(xk; yk), PIM/Approx/(Abs, Squ, Æ) problems can all be solved using
the above protocol.

4.3. PIMPD/APPROX

The only di�erence between the PIM model and the PIMPD model is
that, in the latter, Bob does not need to keep the database secret from
Alice. Therefore, All solutions in the PIM model can be applied to the
PIMPD model as well. Whether the \public" feature of the database
can result in more eÆcient solutions is an interesting question. Although
we do not yet have an answer to it, we observed the following:

Observation 4.1. There is no secure two-party non-interactive solu-
tion for the PIMPD/Approx problem.

Proof. A two-party non-interactive protocol means Bob, by himself, is
able to �nd the item in the database that has minimal distance from the
query.
Assume there is a two-party non-interactive protocol A which solves

any of the PIMPD/Approx problems, in another words, given an en-
crypted/disguised form (q0) of a query q, and the database T that Bob
knows, Bob can �nd the item in the database that has minimal distance
from q as follows. We use A(T; q0) to represent the algorithm on input
T and q0.
Since Bob can use any database he wants, he can use a database like

this: T 0 = f\axxxxxx", \bxxxxxx", ..., \zxxxxxx"g, supposing that the
alphabet is a set from 'a' to 'z'. After applyingA(T 0; q0), Bob will get one
that has the minimal distance from q. For instance, if \mxxxxxx" is the
result, Bob knows that 'm' is the �rst character in q. Since A is a non-
interactive protocol, Bob can reuse it on another database constructed
for the purpose of exposing the second character in q; he can keep doing
this and �gure out the rest of the characters in q.
Therefore, if such a protocol existed, the query q would not be kept

secret from Bob.

The above observation does not rule out the existence of an eÆcient
interactive protocol or a multi-party protocol.

4.4. SSO/APPROX

In this model, Bob is a service provider who provides storage and
database query services to Alice. According to Alice's privacy require-
ment, Bob should know nothing about the database that he stores for
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Alice, nor should he know the query. So Bob has to conduct a disguised
database query based on the encrypted or disguised data of Alice.

The requirement that Bob should not know the query result, as in
the PIM and PIMPD problem, is no longer needed in the SSO problem.
The reason is that Bob does not know the contents of the database, he
does not even know what the database is for, so that knowing whether
Alice's query is in the database does not disclose any secret information
to Bob.

Intuitively, it can look like that the SSO/Approx problem might be
more diÆcult than the PIM/Approx problem because in the latter Bob
at least knows the contents of the database whereas in the former he
knows nothing about the database. But knowing the contents of the
database has a disadvantage, in that Bob cannot know an intermediate
result because he knows one of the inputs (the database); if he also knew
an intermediate result, he might be able to �gure out the other input
(the query) of the computation. However, in the SSO/Approx problem,
Bob knows nothing about the database, so it is safe for him to know
intermediate results without exposing the secret query.

Whether Bob can know intermediate results is a critical issue for re-
ducing the communication complexity. If he knew intermediate results
to some extent, he could conduct the comparison operation to �nd the
minimal or maximal score; otherwise, he has to turn to Alice in order to
�nd the minimal or maximal score, which results in high communication
cost in the PIM problem.

The SSO/Approx problem is similar to the secure outsourcing of sci-
enti�c computations problems studied by Atallah et al. [3]. The di�er-
ence is that in secure outsourcing problems, the inputs are provided by
Alice every time a computation is conducted at Bob's side; therefore,
Alice can encrypt/disguise the inputs di�erently in di�erent rounds of
the computation. However, in the SSO problem, one of the inputs (the
database) is encrypted/disguised only once, and this same input is used
in all rounds of computations; this makes the problem more diÆcult.

So far, we have a solution only for SSO/Approx/Squ problem. The
solution works for both in�nite and �nite alphabets.

4.4.1 SSO/Approx/Squ Protocol. Suppose that Alice wants
to outsource her database T = ft1; :::; tNg to Bob, and wants to know if
query string x = x1:::xn matches any pattern ti in the database T .

The straightforward solution would be to let Bob send the whole
database back to Alice, and let Alice conduct the query by herself.
Although this solution satis�es the privacy requirement, much better
communication complexity can be achieved. Another intuitive ques-
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tion would be whether Bob can conduct the matching independently
after Alice sends him the relevant information about the query. If the
answer is true, Bob should be able to �nd the item ti that has the
closest match to the query x. In another words, if ti = y1:::yn and
scorei =

Pn
k=1(xk� yk)

2, then Bob should be able to �nd the minimum
value of scorei. However, because of the privacy requirement, Bob is
not allowed to know the actual query x, nor is he allowed to know the
content of the database, so how does he compute the distance scorei
between x and each of the element ti in the database?
The idea behind our solution is based on the fact that ~x�~zT = (~xQ�1)�

(Q~zT ), where Q is an invertible matrix. Alice can store Q~zT instead of
~zT at Bob's site, and keeps Q secret from Bob. She will send ~xQ�1 to
Bob each time she wants to send a query x; therefore Bob can compute
~x � ~zT without even knowing ~x and ~z. If we can use ~x � ~zT to represent
the
Pn

k=1(xk � yk)
2, we can make it possible for Bob to conduct the

approximate pattern matching.
For each ti = yi;1:::yi;n in the database T , let ~ti = (

Pn
k=1 y

2
i;k + R �

Ri; yi;1; :::; yi;n; 1; Ri), and let ~x = (1;�2x1; :::; �2xn; RA; 1), where R,

RA and Ri are random numbers. We will have ~x � ~tTi =
Pn

k=1 y
2
i;k

�2
Pn

k=1 xkyi;k +R + RA, and therefore scorei =
Pn

k=1(xk � yi;k)
2 =

~x � ~tTi +(
Pn

k=1 x
2
k � R � RA). Since (

Pn
k=1 x

2
k � R � RA) is a constant,

it does not a�ect the �nal result if we only want to �nd the ti that pro-
duces the minimum scorei. Therefore, Bob can use ~x � ~tTi to compute
the closest match.
Before outsourcing the database to Bob, Alice randomly chooses a

secret (n + 3) � (n + 3) invertible matrix Q, and computes ~zi = Q~tTi ,
then sends T 0 = f~z1; :::; ~zNg to Bob.

Protocol

1 For any query string x = x1:::xn, Alice generates a random number
RA, and constructs a vector ~x = (1;�2x1; :::;�2xn; RA; 1), then
sends ~xQ�1 to Bob.

2 Bob computes score0i = ~x � ~zTi , for i = 1; :::; N .

3 Bob computes minNi=1 score
0

i, and gets the corresponding i.

4 Bob returns ~zi to Alice.

5 Alice computes Q�1~zi and gets ti, which is the closest match of
her query.

Because Alice and Bob are involved in only one round of communica-
tion, the communication cost is O(n).
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Notice that we have introduced random numbers R, RA, Ri for i =
1; :::; N . The purpose of R is to prevent Bob from knowing the actual
distance between x and the items in the database; the purpose of RA is to
prevent Bob from knowing the relationship between two di�erent queries;
the purpose of Ri is to prevent Bob from knowing the relationship among
items in the database. Without Ri, two similar items in the database T
would still be similar to each other in the disguised database T 0; adding a
di�erent random number to each di�erent item will make this similarity
disappear.

4.5. SSCO/APPROX

This model poses more challenges than the SSO model becase Bob
could now collude against Alice with a client, or he can even become
a client. Therefore, one of the threats would be for Bob to compro-
mise the privacy of the database by conducting a number of queries and
deriving the way the database is encrypted or disguised. A secure pro-
tocol should resist this type of active attack. We have a solution for
the SSCO/Approx/Squ problem that works for both in�nite and �nite
alphabets.

4.5.1 SSCO/Approx/Squ protocol. One of the di�erences
between the SSCO/Approx problem and the SSO/Approx problem is
who sends the query. In the SSO/Approx/Squ protocol, Alice trans-
forms the query x to a vector ~xQ�1, and sends the vector to Bob; in the
SSCO/Approx/Squ protocol, the client Carl will send the query. Be-
cause Carl does not know Q, he cannot construct ~xQ�1 by himself. If
Carl could get the result of ~xQ�1 securely, namely without disclosing ~x
to Alice and without knowing Q of course, we would have a solution.
Because Q�1 = (~qT1 ; :::; ~q

T
m), computing ~xQ�1 securely is basically a task

of computing ~x � ~qTk for k = 1 : : : m, which can be solved using the same
technique as that used in solving PIM/Approx/Squ problem.

Therefore, by modifying step 2 of the SSO/Approx/Squ protocol
slightly, and also by using a form of \R� � (score + RA)", instead of
the form of \score + RA" as is used in SSO/Approx/Squ protocol, we
obtain a SSCO/Approx/Squ protocol as the following:

Let T = ft1; :::; tNg be the database Alice wants to outsource to Bob,
and assume the length of each string ti is n. Alice generates N random
numbers R1; :::; RN . For each ti = yi;1; :::; yi;n, let ~ti = (

Pn
k=1 y

2
i;k +R�

Ri; yi;1; :::; yi;n; 1; 1; Ri); let ~zi = Q~tTi , where Q is a randomly generated
(n+ 4)� (n+ 4) matrix.
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In what follows, we assume that Alice outsourced the database T 0 =
f~z1; :::; ~zNg to Bob.

Protocol

1 Whenever a client Carl wants to conduct a search on query x =
x1:::xn, he generates a random number RC .

2 Alice generates random numbers RA and R�.

3 Carl and Alice jointly compute ~q = R�~xQ
�1, where ~x= (1;�2x1; :::;

�2xn; RC ; RA; 1). The computation does not reveal Alice's secret
Q, RA or R� to Carl, nor does it reveal Carl's private query x or
RC to Alice.

4 Carl then sends the vector ~q to Bob.

5 Bob computes scorei = ~q � ~zTi = R�(
Pn

k=1 y
2
i;k � 2

Pn
k=1 xkyi;k +

RC +RA)

6 Bob returns to Alice score0 = minNi=1 scorei.

7 Alice computes score00 = score0

R�
�RA =

Pn
k=1 y

2
i;k�2

Pn
k=1 xkyi;k+

RC and sends it to Carl.

8 Carl computes score = score00+
Pn

k=1 x
2
k�RC , which is the answer

he seeks.

Because of RC , Alice cannot �gure out the actual score for this query,
and because of RA and R�, Carl cannot �gure out the actual score be-
tween his query and other items in the database (except for the matched
one), even if Carl could collude with Bob. The communication cost of
the protocol is O(n2), most of which is contributed by the computation
of R�~xQ

�1 in step 3.

5. CONCLUSION AND FUTURE WORK

We have developed four models for secure remote database access, and
presented a class of problems and solutions for these models. For some
problems, such as SSO/Approx/Squ and SSCO/Approx/Squ problems,
our solutions are practical, and they only need O(n) and O(n2) commu-
nication cost, respectively; while for PIM/Approx and PIMPD/Approx
problems, our results are still at the theoretical stage because of their
high communication cost. Improving the communication cost for those
solutions is one avenue for future work: We suspect that, whenever there
is a dependence on N , that dependence could be made sub-linear (per-
haps logarithmic) by combining our methods with the known powerful
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higher dimensional indexing techniques [25, 6, 2, 18, 26, 14]. However,
combining those schemes with our protocols will not be a trivial task,
and the increase in the constant factors hiding behind the \big-oh" no-
tation may well negate the bene�ts of the asymptotic sub-linearity in
N ; for example, in a tree search for processing the query, Bob has to be
prevented from knowing what nodes of his tree are visited when process-
ing the query (otherwise he gets information about the query), which
requires using a PIR-like protocol at each node down the tree. But even
that is not enough: Alice herself must be prevented from learning any-
thing about Bob's data other than the answer to her query, but in most
of the tree-based schemes in the literature the comparison at a node of
the search tree gives information about the data that is associated with
that node (these schemes were designed for an environment where the
searcher is the owner, and may require substantial modi�cation before
they are used in our context).

Another avenue for future work is the pattern matching of branch-
ing structures: the pattern matching problems that we have discussed
only involve patterns of simple linear structure; in many applications,
patterns have a branching structure, such as a tree or a DAG. The
M/Approx/Edit/Tree problem in our model is one of the examples. De-
veloping a secure protocol to deal with this type of query is a challenging
problem.

Finally, avoiding the use of a third party in the protocols that use
such an Ursula is an interesting problem.
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