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Turret-T Architecture

- Based on Turret, a platform to find attacks in distributed systems
- Runs unmodified target system in virtual machines
- Virtual machines connected with network emulator
- Malicious proxy intercepts packets and inject actions in network emulator
- Controller guides search
- Leverage state information

- Transport protocols
   - Responsible for end-to-end communication
   - e.g. TCP, provides reliability, ordering, and fairness
   - STCP, QUIC, etc.
   - Many versions and implementations of each protocol
- Testing Models 
   - Ignores implementation details
   - Misses implementation bugs
- Testing Implementations
   - Ad-hoc, manual, incomplete testing
- Numerous bugs and vulnerabilities remain

Design Approach

Insights
- Automatically inject malicious/abnormal behaviors and observe
  the result without altering the target code or environment 
- Reduce the search space and find effective attacks

Malicious Actions:
● DROP
● DUPLICATE
● DIVERT
● DELAY
● BURST
● LIE (on field)
● INJECT
● WINDOW
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Examples of Attacks found in 
TCP Implementations:

● Reset attack (Watson 2004)
● SYN Flood (Eddy 2007)
● Ack Storm (Adramov 2011)
● Optimistic Ack (Savage 1999)
● Ack Division (Savage 1999)
● DupAck Spoofing (Savage 1999)
● Shrew (Kuzmanovic 2006)
● Induced-Shrew (Kumar 2009)
● ISN Prediction (Morris 1985)
● Linux Data without Ack flag bug (1999)
● Windows 95 OOB data crash (1997)
● Windows Sockstress attack (CVE-2009-4609)
● Sequence Number Recovery (Gilad 2012)

SYN packets

TCP SYN Flood Attack

- Capturing realism: test unmodified implementations
- Malicious / abnormal behaviors 
  - Collected from previous studies regarding attacks
  - Conducted by modifying or injecting messages
- Mitigating state-space explosion problem
- A general framework
  - Not limited to a specific target 
      environment / implementation / protocol
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Classify states based on observable 
characteristics through learning phase
  e.g. time spent, throughput, etc.

Motivation
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Hypothesis 1: There is a correlation between state characteristics
                           and effective attack strategies
Hypothesis 2: Some characteristics have observable metrics

Use observable metrics to find more effective attack strategies
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State Machine Description

TCP State Machine from: https://commons.wikimedia.org/wiki/File:Tcp_state_diagram_fixed.svg

Need to systematically test protocol 
implementations in malicious senarios


