
CERIAS
The Center for Education and Research in Information Assurance and Security

A Framework to Find Vulnerabilities Using State Characteristics
in Transport Protocol Implementations

Samuel Jero, Hyojeong Lee, and Cristina Nita-Rotaru
Department of Computer Science, Purdue University

Turret-T Architecture

- Based on Turret, a platform to find attacks in distributed systems
- Runs unmodified target system in virtual machines
- Virtual machines connected with network emulator
- Malicious proxy intercepts packets and inject actions in network emulator
- Controller guides search
- Leverage state information

- Transport protocols
 - Responsible for end-to-end communication
 - e.g. TCP, provides reliability, ordering, and fairness
 - STCP, QUIC, etc.
 - Many versions and implementations of each protocol
- Testing Models
 - Ignores implementation details
 - Misses implementation bugs
- Testing Implementations
 - Ad-hoc, manual, incomplete testing
- Numerous bugs and vulnerabilities remain

Design Approach

Insights
- Automatically inject malicious/abnormal behaviors and observe
 the result without altering the target code or environment
- Reduce the search space and find effective attacks

Malicious Actions:
● DROP
● DUPLICATE
● DIVERT
● DELAY
● BURST
● LIE (on field)
● INJECT
● WINDOW

NS-3 Nodes

Benign

Tap Bridge

NS-3 Net Device

Malicious
Tap Bridge

NS-3 Net Device

Malicious
Actions

State
Tracking

 Packet Parser

VM VM VM VM

Network Emulation

Controller

Attack
Strategy

Performance
and Control

State
Indications

Packets
Formats

Examples of Attacks found in
TCP Implementations:

● Reset attack (Watson 2004)
● SYN Flood (Eddy 2007)
● Ack Storm (Adramov 2011)
● Optimistic Ack (Savage 1999)
● Ack Division (Savage 1999)
● DupAck Spoofing (Savage 1999)
● Shrew (Kuzmanovic 2006)
● Induced-Shrew (Kumar 2009)
● ISN Prediction (Morris 1985)
● Linux Data without Ack flag bug (1999)
● Windows 95 OOB data crash (1997)
● Windows Sockstress attack (CVE-2009-4609)
● Sequence Number Recovery (Gilad 2012)

SYN packets

TCP SYN Flood Attack

- Capturing realism: test unmodified implementations
- Malicious / abnormal behaviors
 - Collected from previous studies regarding attacks
 - Conducted by modifying or injecting messages
- Mitigating state-space explosion problem
- A general framework
 - Not limited to a specific target
 environment / implementation / protocol

Automated State Classification Protocol State TrackingState-based
Malicious Action Injection

M

DROP DUP DIVRT LIE on
field 1

Classify states based on observable
characteristics through learning phase
 e.g. time spent, throughput, etc.

Motivation

State Information Leverage

Messages

closed

estab

listen

synsent

synrcvd
finwait

Hypothesis 1: There is a correlation between state characteristics
 and effective attack strategies
Hypothesis 2: Some characteristics have observable metrics

Use observable metrics to find more effective attack strategies

State

History of effective actions/state

Attack Impact

Execution
State
Classification

Action
Suggestions

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK

(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSEState
Information

State Machine Description

TCP State Machine from: https://commons.wikimedia.org/wiki/File:Tcp_state_diagram_fixed.svg

Need to systematically test protocol
implementations in malicious senarios

