

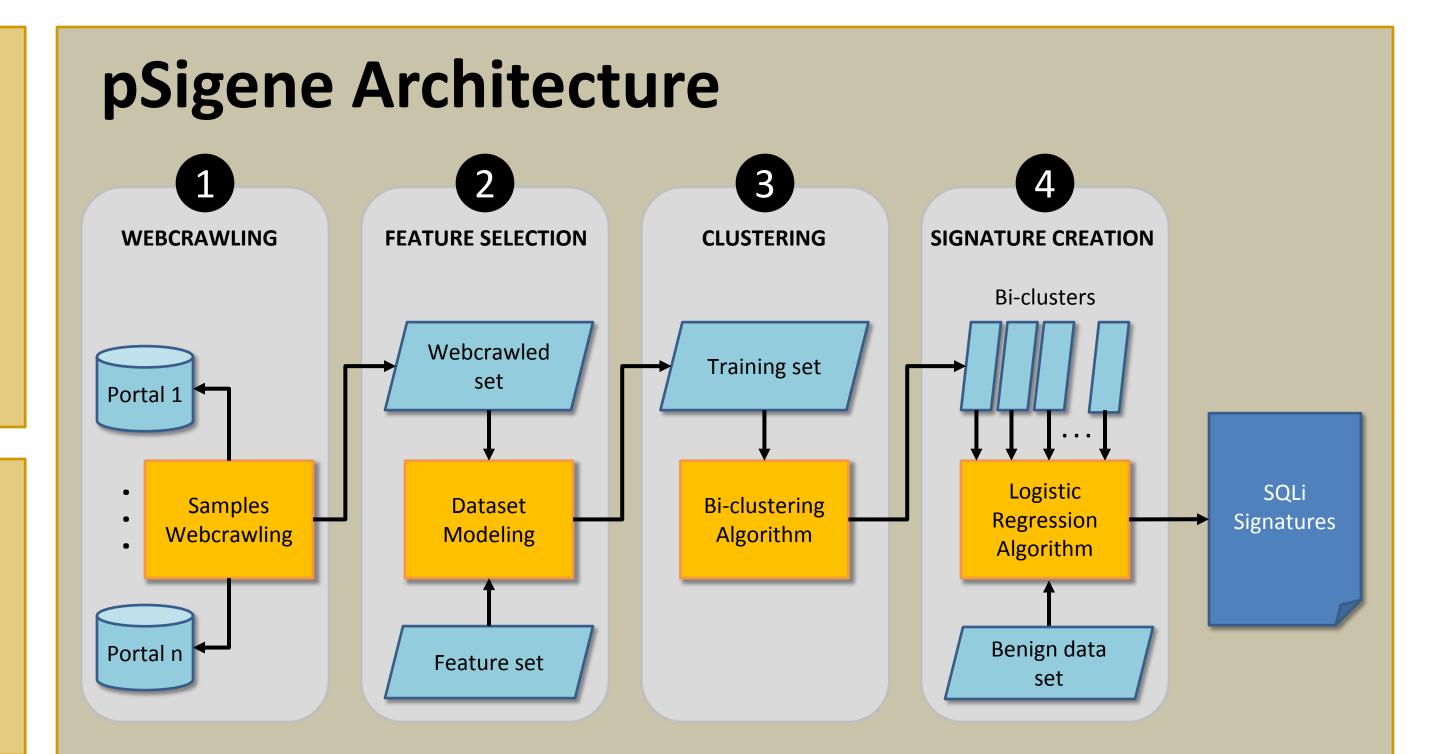
The Center for Education and Research in Information Assurance and Security

pSigene: Webcrawling to Generalize SQLi Signatures

Gaspar Modelo-Howard, Fahad Arshad, Chris Gutierrez, Saurabh Bagchi, Yuan Qi

Problem Statement

- Misuse-based detection systems use signatures of attacks to detect malicious activity, which require to be continuously updated
- Current approach to create and update signatures is manual
- Signatures to improve detection systems, are necessary to complement prevention mechanisms



Specific Goals

- Define process to *automatically generate detection signatures* by performing data mining on attack samples
- Create generalized signatures, matching for attacks and its variations

Proposed Solution

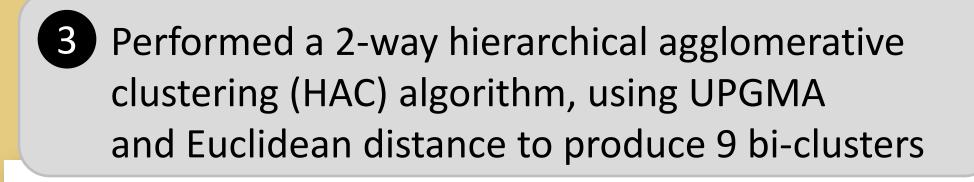
- Framework for the automatic creation of generalized signatures represented as collection of regular expressions, by applying a sequence of two data mining techniques to a corpus of attack samples
- Solution suggests number of signatures necessary to detect attacks, while helping reduce size of signatures
- We demostrate our solution specifically with SQL injection (SQLi) attacks, which have been very dominant in the last couple of years

pSigene (probabilistic Signature Generation) follows a four-step process:

- 1 WEBCRAWLING: Search cybersecurity portals to collect attack samples
- FEATURE SELECTION: Extract a rich set of features from attack samples and detection signatures
- CLUSTERING: Apply bi-clustering technique to samples, identifying 3 distinctive features for each resulting bi-cluster
- SIGNATURE CREATION: Generate generalized signatures, one for each bi-cluster, using logistic regression modeling

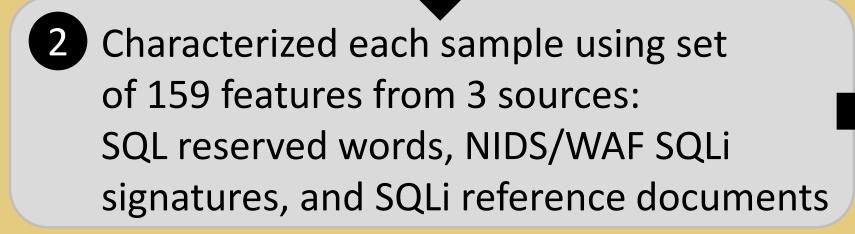
Experimental Results

Collected over 30k SQLi attacks samples from 2 cybersecurity portals



Evaluation

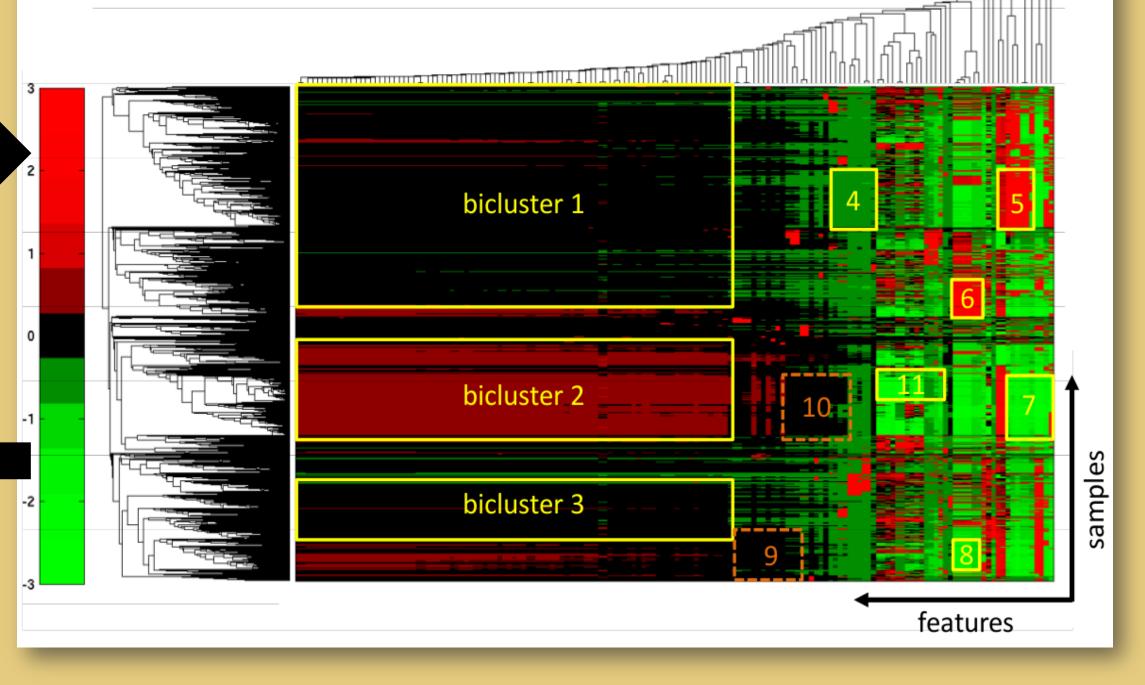
- Test Set: 1.4M (benign) and 7.2k (malicious) HTTP GET requests
- ROC Curves for each of the

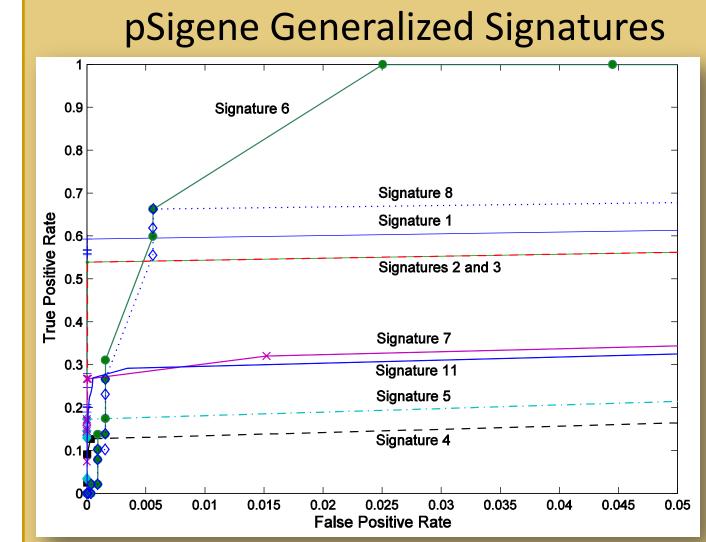


4 Generated 9 generalized signatures, one for each bi-cluster b_i , of the form:

Signature(b_j) = $\frac{1}{1 + e^{-(\Theta_j^T F_j)}} < threshold_j$

Each signature is a probabilistic classifier





Accuracy Comparison between \bullet **Different SQLi Rulesets**

RULES	TPR(%)	FPR(%)
Bro	73.23	0.00
Snort –	79.55	0.1742
Emerging Threats		
ModSecurity	96.07	0.0515
pSiGene (9 rules)	86.53	0.037
pSiGene (7 rules)	82.72	0.016

pSigene Example: Signature 6 "<=>|r?like|sounds+like|regex" "=[-0-9%]*" $\Theta_6^T F_6 = -3.761 + 0.261 f_{6.53} - 0.117 f_{6.28} + 0.262 f_{6.37} + 0.261 f_{6.36} + 0.262 f_{6.25} + 0.708 f_{6.32}$

"[\?&][^\s\t\x00-\x37\|]+?" "([^a-zA-Z&]+)?&|exists" "=" "\)?;"

• Signatures were implemented in Bro NIDS with function that returned number of times a feature was found in a HTTP request (count_all($f_{i,i}$, req_{HTTP}))

