# 

The Center for Education and Research in Information Assurance and Security

# Secure Big Data Computations in the Cloud

Julian Stephen and Patrick Eugster Department of Computer Science, Purdue University

# Security in the Cloud

Communication centric:

- Focus on messages exchanged between machines.
- Firewalls, anti-virus, etc.
- Data centric:
  - Focus on data at rest.
  - Encryption, access control, etc.
- Computation centric:
- Focus on computations generating correct output. • Byzantine fault tolerant replication, output verifiability. • Solutions overlap, need to secure all three fronts.

# **Research Goals**

- Secure Computations: Tolerate benign/malign faults in computing processes using byzantine replication.
- Minimize Overhead: Limit overhead caused by comparisons and re-computations.
- Attribution: Identify potentially faulty components.
- Portability: Work on multiple clouds, with different infrastructure.

#### Architecture

## **BFT Replication Challenges.**

- No monolithic server: Single client request executed by multiple nodes (eg Mapreduce).
- Size of data: Comparisons and re-computations highly expensive.

Resource

Manager

Hadoop



v = ipratio(n) + dist(n);

fraction of total input processed

• The instrumented pig script creates output digests at consensus points.

#### **Data Flow Analysis**



#### dist(node)

distance of this node from closest marked node.

• Execution handler ensures agreement among all digests.

# Attribution

- Run multiple jobs such that computation nodes overlap.
- Increase suspicion level of nodes that return faulty results.

# Portability

• Can run on top of any data flow based big data analysis language - (DryadLINQ, PigLatin)

### Implementation

 Modifications to pig interpreter to instrument pig scripts for creating output digests.

 Modifications to Hadoop resource allocator to enforce replica placement and node overlap.

# **Future Work**

- Homomorphic encryptions can be used to protect against malicious computations leaking information.
- Runtime statistics provide more accurate information to identify better consensus points.





UNIVERSITY