# 



The Center for Education and Research in Information Assurance and Security

## **Differentially Private Grids for Geospatial Data**

Wahbeh Qardaji, Weining Yang, Ninghui Li

I x x x x x x

× × × ×

#### **Problem Definition**

#### **Geospatial Data**



- **Data**: Two dimensional. Each tuple is a point in two-dimensional space.
- **Goal**: publish a synopsis of the dataset to accurately answer range count queries.
- Each query is a rectangle in the data domain.

#### Uniform Grid

Simplest approach: partition domain into m x m cells of equal size Standard deviation of noisy error:  $\frac{\sqrt{2rm^2}}{\epsilon}$ Standard deviation of non-uniformity error:  $\frac{\sqrt{rN}}{c_0 m}$  $\arg\min \frac{\sqrt{2rm}}{\epsilon} + \frac{\sqrt{rN}}{mc_0} \longrightarrow m = \sqrt{\frac{N\epsilon}{c}}, c \approx 10$ 

#### Adaptive Grid

•Idea: Adapt the level of partitioning based on the



**Challenge**: balance privacy and utility goals:

- Privacy Goal: Differential privacy
- Achieved by adding noise to query answers
- Utility Goal: High accuracy in count queries

#### Differential Privacy

 $\Pr[\mathcal{A}(D) = S] \le e^{\epsilon} \cdot \Pr[\mathcal{A}(D') = S]$  $\forall S \in Range(\mathcal{A})$  $\forall D, D' : D \setminus D' = \{t\}$ 

For any two datasets that differ by at most one tuple, a differentially private algorithm will behave approximately the same, i.e., no single tuple affect the output too much.

To satisfy differential privacy, we can add Laplace noise to the output.

$$\begin{split} \mathcal{A}_g(D) &= g(D) + \mathsf{Lap}\left(\frac{\mathsf{GS}_g}{\epsilon}\right) \\ \text{where} \quad \mathsf{GS}_g &= \max_{(D,D'):D\simeq D'}|g(D) - g(D')|, \\ \text{and} \quad \Pr[\mathsf{Lap}(\beta) = x] &= \frac{1}{2\beta}e^{-|x|/\beta} \end{split}$$

### Error Analysis

For all the methods, one partitions the domain into cells and adds noises to counts of each cells. There are two sources of error when answering a query.

- Noisy error: Error from Laplace noise.
- Non-uniformity error: Error comes from the distribution of dataset.

Smaller noisy error

Coarser partition

Smaller non-uniformity error  $\iff$  Finer partition

Optimization: Find a best partition

#### **Previous Methods**

number of data points in each region. •Two level partitioning:

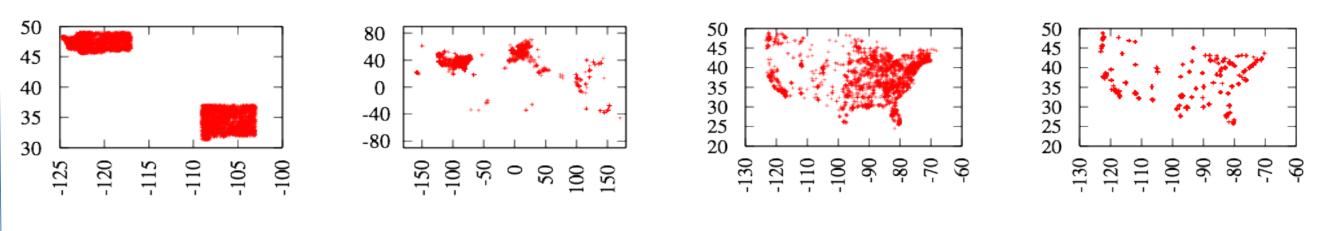
| x x x x x x x x x x x x x x x x x x x | x xx x x<br>xx | « × <sub>× ×</sub> × × | xx<br>xx<br>x_x X* |                        | ××××× | ************************************** | x xxx<br>X x x x | x xx x<br>x xx x |
|---------------------------------------|----------------|------------------------|--------------------|------------------------|-------|----------------------------------------|------------------|------------------|
| x x x x<br>x x x                      | ×xxxx          | × x                    | × ×                | xx x<br>xx xx<br>xx xx | ××××× | <sup>€</sup> *x×x<br>×x×x              | × × ×            | ×××              |
|                                       |                |                        |                    |                        |       |                                        |                  |                  |

1.Lay a coarse m1 x m1 grid over the data domain and issue a DP count query 2.Partition each into an m2 x m2 grid based on noisy count

3.Apply constrained inference to reduce error

$$m_1 = \max\left(10, \frac{1}{4} \left\lceil \sqrt{\frac{N\epsilon}{c}} \right\rceil\right) \qquad m_2 = \left\lceil \sqrt{\frac{N'(1-\alpha)\epsilon}{c_2}} \right\rceil \qquad c_2 = \frac{c}{2} \approx 5$$

#### Experiment



(a) The road dataset

(c) The landmark dataset (b) The checkin dataset

(d) The storage dataset

•We choose 6 different query sizes and for each query size, we randomly generate 200 queries.

•We measure relative error as criteria.

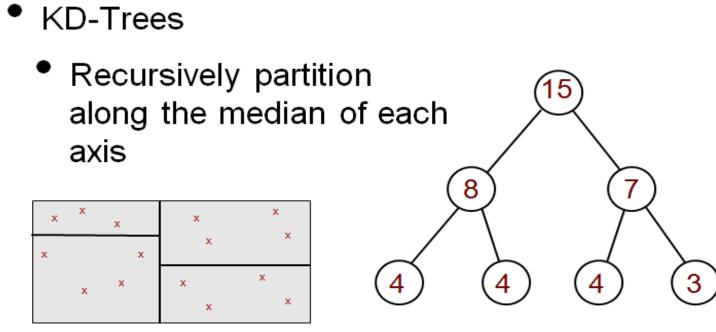
$$RE_{\mathcal{M}}(r) = \frac{|Q_{\mathcal{M}}(r) - A(r)|}{\max\{A(r), \rho\}}$$

$$\epsilon = 0.1$$
  $\epsilon = 1.0$ 

| Dataset  | N     | Sugg. size | Best sizes | Sugg. size | Best sizes |
|----------|-------|------------|------------|------------|------------|
| road     | 1.6 M | 126        | 48-128     | 400        | 96-192     |
| checkin  | 1 M   | 100        | 64-128     | 316        | 192-384    |
| landmark | 0.9 M | 95         | 64-128     | 300        | 256-512    |

KD-tree : recursively partition along the median of each axis.

Quad-tree : Recursively partition each region into 4 quadrants. KD-hybrid : Quad-tree at first few levels and KD-tree for the other levels. Privlet method : Apply Wavelet transformation and build a binary tree.



#### Analysis of Hierarchical Method

One can benefit from doing hierarchical

•Use parent nodes instead of child nodes to answer queries.

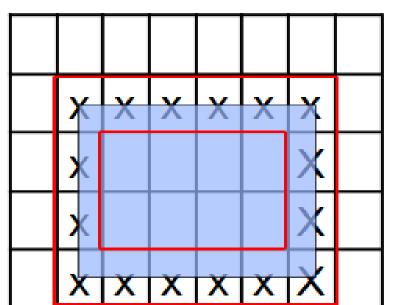
IS

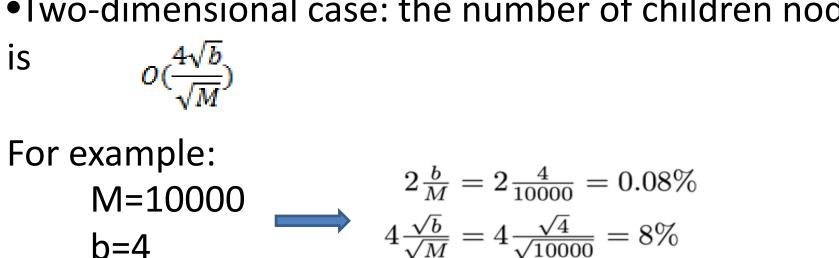
#### **One-dimension**

There are M cells and branching factor is b. •One-dimensional case: the number of children nodes used 0(-IS

•Two-dimensional case: the number of children nodes used

**Two-dimension** 





•Such proportion can be larger for higher dimension dataset. •Hierarchical method is not suitable for high dimension dataset.

