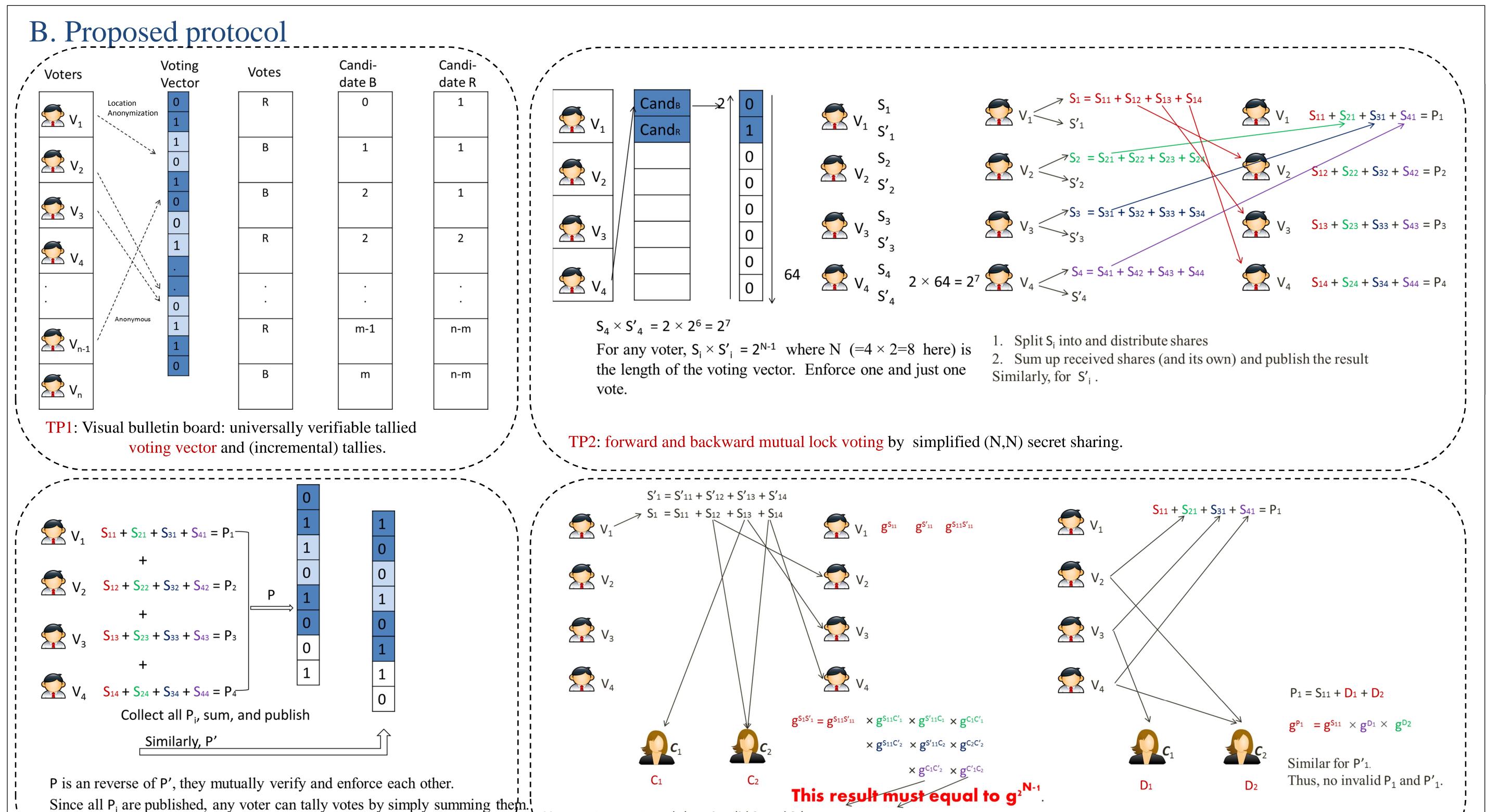
CERIAS


PURDUE UNIVERSITY

The Center for Education and Research in Information Assurance and Security

Mutual Restraining Voting Involving Multiple Conflicting Parties

A. Problem Statement

- A gap between casting secret ballots and tallying & verifying individual votes.
- Due to disconnection between the vote-casting process and the vote-tallying process or opaque transition (e.g., due to encryption) from vote-casting to vote-tallying.
- A groundbreaking e-voting protocol that fills this gap and provides a fully transparent election.

C. A Voting Example and Web Based Dynamic Bulletin Board

Voter	Secret	Vote	Shares			Secret ballot		
	Location		Self-computed	Server generated				
\mathbf{V}_1	2	B (32)	12 (=32-5-15)	<u>5</u>	<mark>8,7</mark> (sum=15)	45 (=12+1+15+17)		
V_2	3	R (4)	13 (=4-1-(-10))	<u>1</u>	-3,-7 (sum=-10)	28 (=5+13+7+3)		
V_3	4	B (2)	-10 (=2-15-(-3))	15	<u>7,-10 (sum=-3)</u>	30 (=8+(-3)+(-10)+35)		
V_4	1	R (64)	9 (=64-17-38)	17	<u>3,35</u> (sum=38)	-1 (=7+(-7)+(-10)+9)		

A voting example involving 4 voters and 2 candidates (R and B): Notes: <u>shares</u> with underline are generated by Server 1, e.g., <u>5</u> of V₁ and <u>7</u> of V₃, and <u>shares</u> in red are generated by Server 2, e.g., <u>8</u> of V₁ and <u>15</u> of V₃.

What we get?

- Seamless, viewable, verifiable, and privacy-preserving transition from vote-casting to vote-tallying
- Individual voters can verify their own votes and are technically and visually assured that their votes are indeed counted in the final tally
- Public can verify the accuracy of the count, political parties will be able to catch fraudulent votes
- Secrecy of any voter's vote is remained
- Transparent e-voting protocol: enable open and fair elections with full voter assurance, even for the voters of minor or weak political parties.

Dr. Xukai Zou (xkzou@cs.iupui.edu), Yan Sui, Huian Li, Wei Peng, and Dr. Feng Li

	Incremental aggreg	Incremental tallying				
Voter	Secret Ballot	Aggregation	VA	Vote	R counts	B counts
V_2	28	28	0	R	1	U
\mathbf{V}_1	45	73		D	1	1
V_4	-1	72		B	1	1
V_3	30	102	0	_		
1.Increme	ntal aggregation of	0	R	2	1	
-	ial aggregations 28,	1				
informatio	on on votes	-				
3. Last ag	gregation 102 (=32+	1	B	2	2	
votes and	it is the final tallied	\mathbf{O}				

