

CERIAS

The Center for Education and Research in Information Assurance and Security

Covert Channels in Combinatorial Games

Philip Ritchey and Vernon Rego Department of Computer Science, Purdue University

The Prisoners' Problem

Combinatorial Games Examples:
2 players
Angels and Devils

Methodology

- Perfect Information
- No Chance Moves
- Why Games?
- Dynamic
- Interactive
- Easy To Play
- Ubiquitous

- Chess
- Checkers
- Chomp
- Connect-4
- Dots
- Go
- Tic-Tac-Toe

Detection Strategies

- Stupid move \rightarrow suspicious
 - Mean capacity for X = 7.455 bits/game
 - Mean capacity for O = 6.650 bits/game
- Non-optimal move \rightarrow suspicious
 - Mean capacity for X = <u>7.489 bits/game</u>
 - Mean capacity for O = <u>4.326 bits/game</u>
- Optimality out of bounds \rightarrow suspicious

- Mean capacity for X = 7.644 bits/game
- Mean capacity for O = <u>5.429 bits/game</u>
- Compare to Model of Human Gameplay
 - What model? "We're working on it!"

Games ~ Structured Interactions

- Why study games?
 - Generalizable
 - Human problem solving not well understood
 - Playing games is computationally trivial
 - Playing games well or human-like is not.
- Structured Interactions
 - N participants interacting according to a set of rules
 - Rules and actions are public
 - Captures many real-world systems
 - Network Protocols, Traffic, Natural Language, Stock Market, Negotiation.

Anomaly Detection

 \bigcirc

- Detecting covert channel usage is anomaly detection
- Requires models of normal system behavior

How should we model human behavior?

• Impact: Identification, Authentication, Insider Threat.

