

The Center for Education and Research in Information Assurance and Security

Increasing Network Resiliency by Optimally Assigning **Diverse Variants to Routing Nodes**

Andrew Newell, Daniel Obenshain, Tom Tantillo, Cristina Nita-Rotaru, and Yair Amir

DIVERSITY ASSIGNMENT PROBLEM

- Exploits target specific vulnerabilities
 - Operating system
 - Administrator

MOTIVATION

- Routing code
- Homogeneous networks potential total compromised

• **Diverse networks** more likely portion of network survives

A	assignment of variants to nodes
e	compromise event
C	all compromise events
f(A, e)	$\frac{\# \text{ client-pairs connected}}{\# \text{ client-pairs}}$

SOLUTION TECHNIQUES

- Problem is NP-Hard
- Mixed Integer Programming (optimal)
 - Heuristics prune large amount of search space - IBM's CPLEX solver does well in realistic scenarios
- Greedy algorithm (approximate)
 - Assigns iteratively to maximize immediate results
 - Achieves nearly optimal solution

GOAL

- Given topology and diverse variants
 - # diverse variants < # nodes
 - Each variant independent probability of compromise
 - Resilient routing protocol
- Assign variants to nodes to maximize connected clients

CASE STUDY

- LTN cloud service provider topology
- Three representative variants that fail with 10%(blue), 15% (yellow), and 20% (red)
- Random assignments are quite poor
- Increasing diversity increases resilience

1 variant (homogeneous) 90% Exp. client conn.

2 variants 98.5% Exp. client conn.

3 variants 99.7% Exp. client conn.

