CERRS

The Center for Education and Research in Information Assurance and Security

Adversarial Testing of Wireless Routing Implementations Endadul Hoque^{*}, Hyojeong Lee^{*}, Rahul Potharaju^{*}, Charles Killian^{‡*}, and Cristina Nita-Rotaru *Department of Computer Science, Purdue University. [‡]Google, Inc.

ROUTING IN WIRELESS NETWORKS

Routing protocls

- Fundamental component of wireless networks
- Different from traditional routing protocols
 - ▶ Proactive: *DSDV* ▶ Reactive: *AODV* ▶ Secure: *ARAN*

Robustness and security

- Traditional efforts
 - Simulation Model checking

Limitations

- Real-world implementations bring new vulnerabilities
 - Model checking and/or simulation not enough
- Adversarial testings discover critical vulnerabilities
 - Simulator-based implementation may not cover all

GOAL / CONTRIBUTIONS

Goal: Automate adversarial testing of real-world implementation of wireless routing protocols

Design platform for wireless routing protocols

- Extension of an existing platform (Turret)
- Leverage network emulation and virtualizations
- Support special features for wireless protocols

Demonstrate attack/bug discovery

- Case studies: AODV and ARAN
- (Re-)discover 14 attacks
- Discover 3 bugs

Turret

- For general distributed systems
- Use target system's binary
- Support manipulation of protocol messages

TURRET-W PLATFORM

Turret-W

- Wireless network emulation
 - to support wireless routing protocols
- Separation of control plane and data plane
 - to support basic attacks such as blackhole attacks
- Side channels among malicious nodes
 - to support colluding attacks such as wormhole attacks
- Replay packets

Evaluation methodology

- 12 VMs, vary # of malicious nodes • Routing: AODV, ARAN
- Application: iperf
- Performance metric: PDR
- Combine blackhole/wormhole attacks • Baseline performance from benign test

AODV

- 1 new implementation-level attack Lie RREQ type 2 - cause neighbors to crash
- 7 known protocol-level attacks
 - Reply RREP

 LieAdd RREP destsq.
 Blackhole/wormhole attacks
- 2 bugs
 - Kernel interaction order Route packet harder

ARAN

- 6 known protocol-level attacks
 - ► Divert REP ► Drop RDP ► Blackhole/wormhole attacks
- 1 bug
 - Wrong postal address

CASE STUDY

