

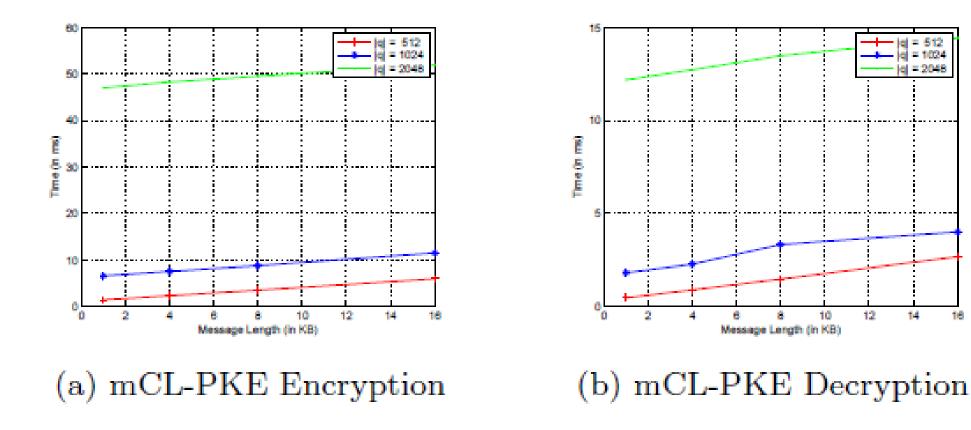
The Center for Education and Research in Information Assurance and Security

An Efficient Certificateless Cryptography Scheme without Pairing

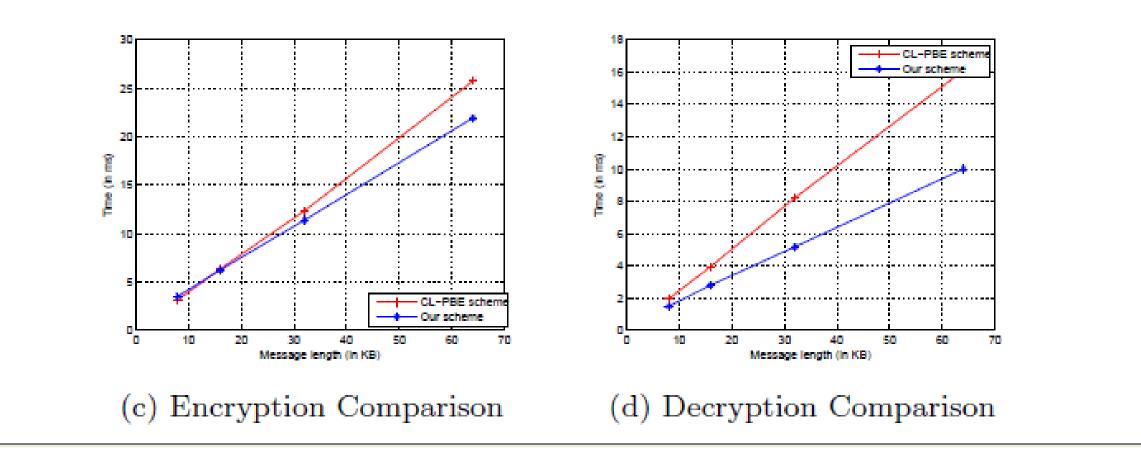
Seung-Hyun Seo, Mohamed Nabeel, Xiaoyu Ding, Elisa Bertino Purdue University

• Goals of CL-PKE

1) To solve the certificate management problem of traditional PKC 2) To solve the key escrow problem of ID based PKC

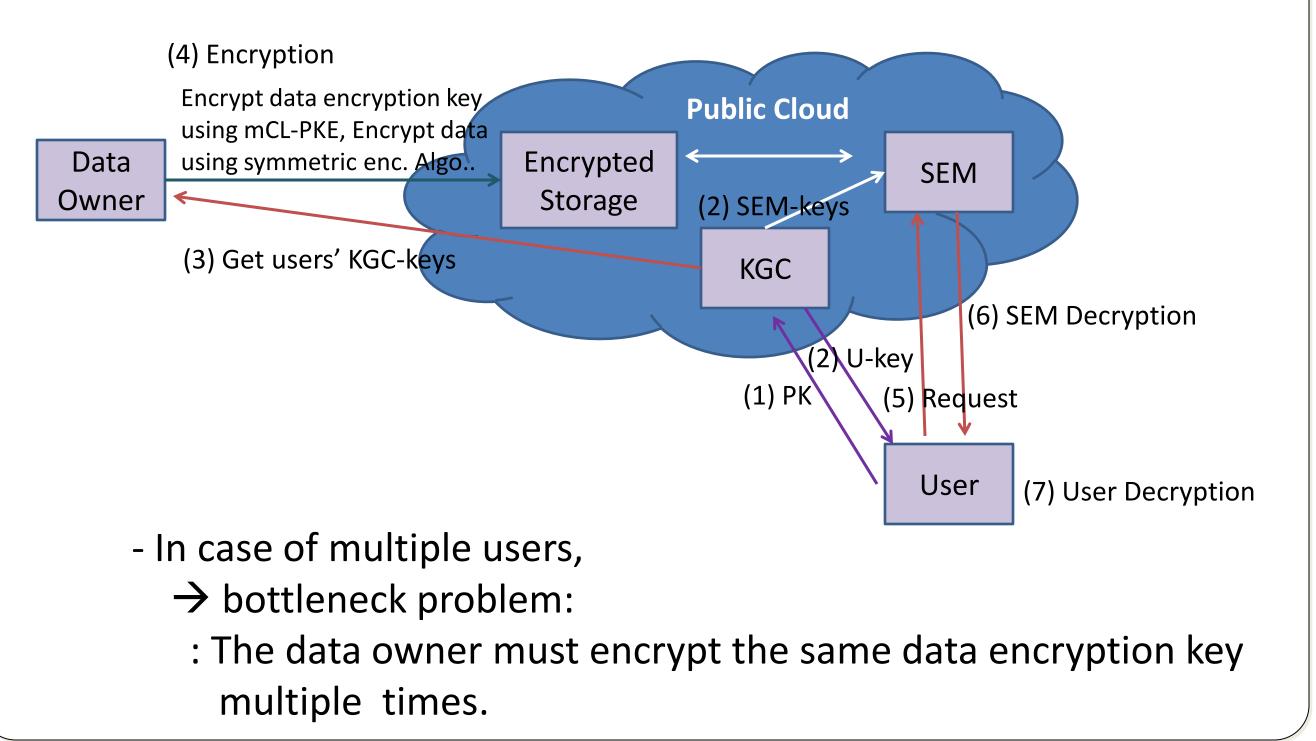

3. Experimental Results

• The experimental environment


CPU	Memory	OS	Program Lang.	Library
Intel Core [™] i5- 2430 CPU @ 2.40GHZ	8 GBytes memory	32 bits GNU Linux kernel	C/C++	NTL library version 5.5.2

2. SetPrivateKey $z_A \in \mathbb{Z}_q^*$	1. SetUp Pick a generator g of \mathbb{Z}_p^* with order q .	6. SEM-Decrypt	5. Encrypt
3. SetPublicKey $U_A = g^{z_A}$	Select $x \in \mathbb{Z}_q^*$ uniformly at random and compute $y = g^x$. Choose cryptographic hash functions $H_1 : \{0,1\}^* \times \mathbb{Z}_p^* \to \mathbb{Z}_q^*, H_2 : \{0,1\}^* \times \mathbb{Z}_p^* \times \mathbb{Z}_p^* \to \mathbb{Z}_q^*, H_3 : \{0,1\}^* \to \mathbb{Z}_q^*, H_4 : \mathbb{Z}_p^* \to \{0,1\}^{n+k_0}, H_5 : \mathbb{Z}_p^* \to \{0,1\}^{n+k_0}, \text{ and } H_6 : \mathbb{Z}_p^* \times \{0,1\}^{n+k_0} \times \mathbb{Z}_p^* \times \{0,1\}^{n+k_0} \to \mathbb{Z}_q^*, \text{ where}$	Check that ID_A is a legitimate user whose key has not been revoked. Compute $C_1^{d_0}$. $C_1^{d_0} = g^{r \cdot d_0} = g^{r \cdot (s_0 + xH_1(ID_A, w_0))}$ $= g^{r \cdot s_0} \cdot g^{r \cdot xH_1(ID_A, w_0)} = w_0^r \cdot y^{r \cdot H_1(ID_A, w_0)}$ Compute $C_2 \oplus H_5(C_1^{d_0})$	Check whether $g^{d_1} = w_1 \cdot y^{H_2(ID_A,w_0,w_1)}$. If the checking result is not valid, encryption algorithm must be aborted. Choose $\sigma \in \{0,1\}^{k_0}$ and compute $r = H_3(M, \sigma, ID_A, U_A)$. Compute $C_1 = g^r$.
7. User-Decrypt	n, k_0 are the bit-length of a plaintext and a random bit string, respectively.	$\begin{aligned} C_2 \oplus H_5(C_1^{d_0}) \\ &= (M \sigma) \oplus H_4(U_A^r) \oplus H_5(w_0^r \cdot y^{H_1(ID_A, w_0) \cdot r}) \oplus H_5(C_1^{d_0}) \\ &= (M \sigma) \oplus H_4(U_A^r) \oplus H_5(w_0^r \cdot y^{H_1(ID_A, w_0) \cdot r}) \oplus H_5(w_0^r \cdot y^{H_1(ID_A, w_0) \cdot r}) \\ &= (M \sigma) \oplus H_4(U_A^r) \end{aligned}$	Compute $C_2 = (M \sigma) \oplus H_4(U_A{}^r) \oplus H_5(w_0^r \cdot y^{H_1(ID_A,w_0)\cdot r}).$ Compute $C_3 = H_6(U_A, (M \sigma) \oplus H_4(U_A^r), C_1, C_2).$
$C_1^{z_A} = g^{r \cdot z_A} = g^{z_A \cdot r} = U_A^r$ Parse M' and σ' from $M' \sigma' = H_4(C_1^{z_A}) \oplus C'_2$ Compute $r' = H_3(M', \sigma', ID_A, U_A)$ and $g^{r'}$ Check whether $g^{r'} = C_1$	4. SEM-Key Extract selects $s_0, s_1 \in \mathbb{Z}_q^*$ $w_0 = g^{s_0}, w_1 = g^{s_1}, d_0 = s_0 + xH_1(ID_A, w_0), d_1 = s_1 + xH_2(ID_A, w_0, w_1)$. KGC sets d_0 as the SEM-key for A. After A proves the knowledge of the secret value z_A such that $U_A = g^{z_A}$, KGC sets (U_A, w_0, w_1, d_1) as the A's public keys.	Check whether $C_3 = H_6(U_A, C_2 \oplus H_5(C_1^{d_0}), C_1, C_2).$	

- Drawbacks of previous work
 - 1) Inefficient pairing based approach
 - 2) Weak Security CPA(Chosen Plaintext Attack), Partial decryption attack
- Key features of our mCL-PKE without pairings
 - 1) Instantaneous revocation of compromised public keys using Security Mediator(SEM)
 - 2) Solution of the key escrow problem and certificate management problem based on CL-PKC
 - 3) Efficiency based on pairing-free approach
 - 4) Security against CCA (Chosen Ciphertext Attack) and Partial decryption attack
- Encryption and decryption times of the mCL-PKE for different message size


• Performance comparison with a recent pairing based scheme

4. Discussions and Future Work

Application Scenario

• Secure data sharing for public cloud computing services

