

2012 - 966-32D - Public Population Information in Differential Privacy - Christine Task AIE

The Center for Education and Research in Information Assurance and Security

Publicly Constrained Populations in Differential Privacy

Christine Task, Chris Clifton, Computer Science Department, Purdue University

Differentially private queries use noise to blur borders of neighboring possible worlds:

Q: "How many

Possible World	with Bob Depressed: Q(TW-	+Bob) = 29

Q_{private} (TW) = **27.2** (Add random noise of standard

What if it's public knowledge that some data-points simply *can't occur* in the data-set?

What does an attacker learn from the privatized query result R? For any neighbors X, Y:

 $\frac{Prob(True World (TW)=X | Q_{private}=R)}{Prob(True World (TW)=Y | Q_{private}=R)} = L_{x,y} \frac{Prob(TW=X)}{Prob(TW=y)}, \text{ where } L_{x,y} = \frac{Prob(Q_{pivate}=R | TW=X)}{Prob(Q_{pivate}=R | TW=Y)}$

 $L_{x,y}$ measures how much an attacker learns from R about the relative likelihood of X vs. Y: which world is more likely true. Differential Privacy requires that *L* be fairly close to 1, $L \leq e^{\varepsilon}$ for small $\varepsilon > 0$. If Q(X) - Q(Y) is large, then large noise is needed to ensure this.

But if Y has an arbitrary, impossible neighbor Z:

 $\frac{\operatorname{Prob}(TW=Z | Q_{private}=R)}{\operatorname{Prob}(TW=Y | Q_{private}=R)} = L_{Z,Y} \frac{0}{\operatorname{Prob}(TW=Y)} = 0$

We can ignore $L_{z,y}$ when calibrating noise, because the attacker's belief in the relative likelihood of X vs. Z cannot change. She knows Prob(Z) = 0.

Many queries that appear to require too much noise to be feasibly privatizable in general, can be privatized with fairly little noise when public knowledge is considered.

Query	Generic Noise	Potential Context	Constrained Noise
How many triangles are there	Unbounded	Given G is a subset of public school twitter follower	Bounded by max individual
in graph G?		graph that represents sexual relations.	triangle count of public graph
Average GPA in CS426?	Noise in denominator,	Given public knowledge that <i>n</i> people are registered	Standard deviation of noise
	orders of magnitude error	for the class, no noise necessary in denominator.	values is just $1/n$
How many in social network S	Unbounded	Given that <i>S</i> limits members to at most <i>m</i> friends.	Standard deviation of noise is
have more than k friends?			m. good when $ S \gg m$

966-32D.pdf

