

2012 - 77E-936 - Privacy-Preserving and Efficient Friend Recommendation in Social Networks - Lei Ces

The Center for Education and Research in Information Assurance and Security

Privacy-Preserving and Efficient Friend Recommendation in Social Networks

Bharath K. Samanthula¹, Lei Cen², Wei Jiang³, Luo Si⁴

^{1,3}Dept. of Computer Science, Missouri S&T, {bspq8, wjiang}@mst.edu ^{2,4}Dept. of Computer Science, Purdue University, {lcen, lsi}@cs.purdue.edu ⁴CERIAS

Introduction

Friend recommendation is a well-known application in many social networks and has been studied extensively in the recent past. However, with the growing concerns about users' privacy, there is a strong need to develop privacy preserving friend recommendation methods for social networks. In this paper, we propose two novel methods of Privacy-Preserving Friend Recommendation(FFPR) based on common neighbors proximity.

The first method is based on the properties of additive homomorphic encryption scheme and also utilizes a universal hash function for efficiency purpose. Nevertheless, this efficiency comes at the expense of degraded accuracy due to the involved hash collisions. Whereas, the second method utilizes the concept of protecting the source privacy through randomizing the message passing path and recommends friends accurately.

 B_1

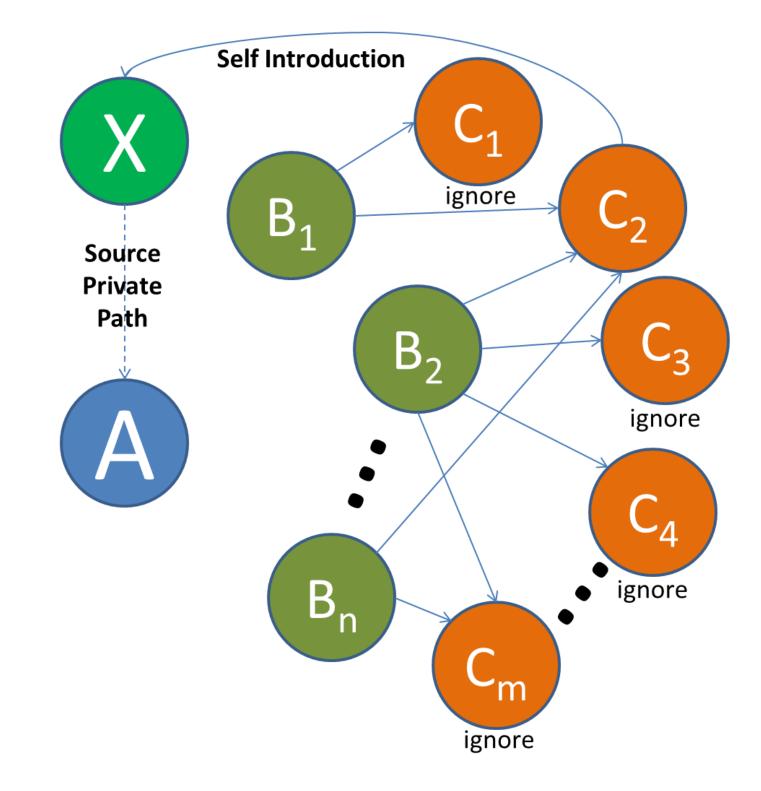
Encrypted

VDted

B

Friend list

Two Protocols


The protocol PPFR_b utilizes the, additive homomorphic **encryption scheme[1]** to sum up the friend list of all **Decryption &** A's friends under encryption.

A trusted server T is used to public the encryption key and do the decryption. Only T knows the private key for decryption.

Each B_i encrypts his/her friend list as a vector and send it to A. A sums up all the list, permute the list and send it to T. T decrypts only the numbers with high frequency, and send it back to A. A undo the permutation and get the common neighbor recommendation.

A hash function is used to represent the friend list,

resulting in approximate recommendation.

Protocol: PPFR_{sp}

The protocol PPFR_{sp} utilizes **protecting the source** privacy[2] technique to let the candidates introdu themselves.

desu/+

Additive

Homomorphism

Protocol: PPFR_h

Threshold

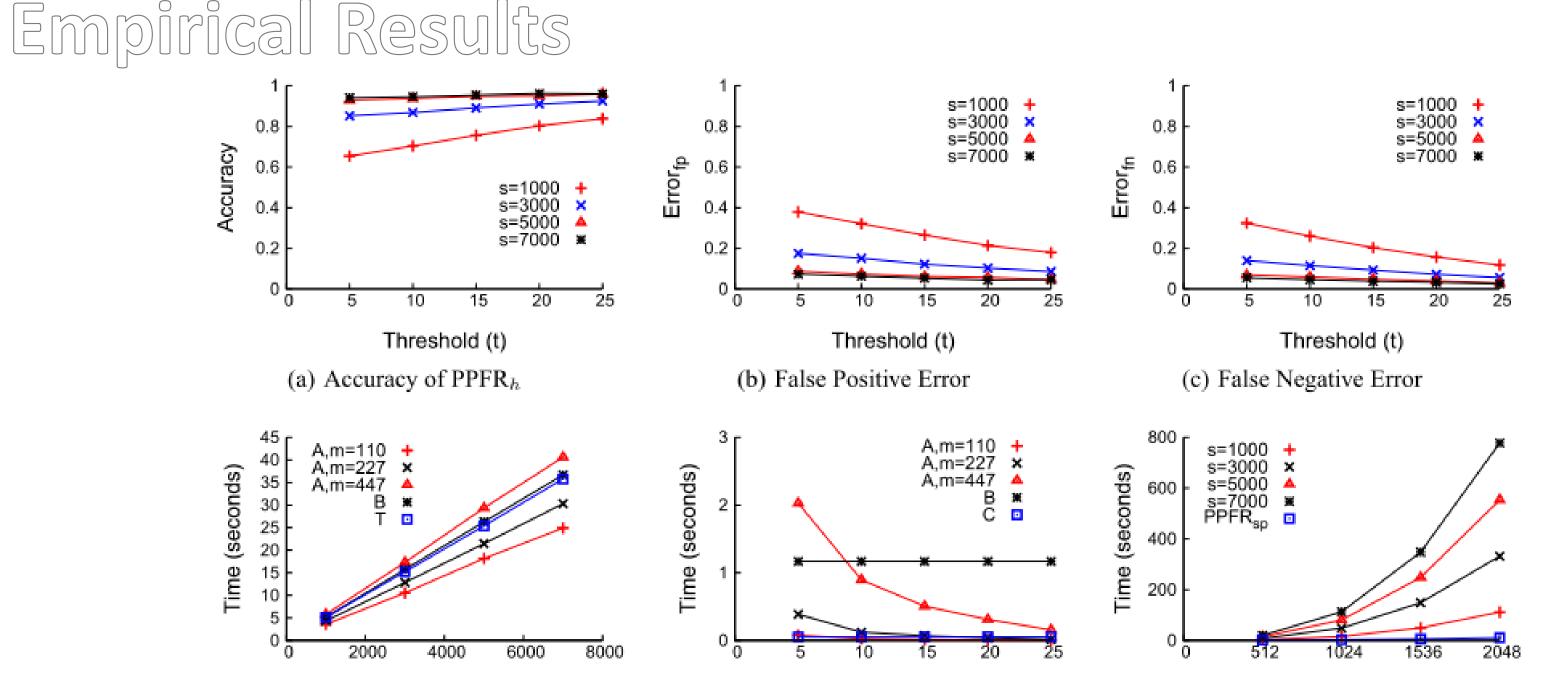
Permuted

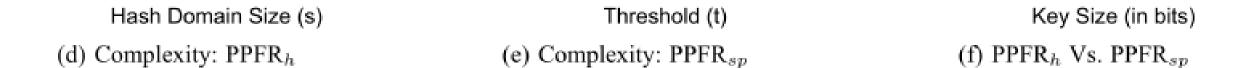
Sum

All A's friends B_i will send announcement to their friends C_i together with an randomly chosen mess passing path. C_i can choose different policy to decide whether send an self introduction along the given path. A will get multiple messages from anonymous users. A can read the self introduction only when he/she get enough number of messages from the same C_i. This is ensured by use **secrete sharing technique[3]**. Public key system(RSA) is used to ensure source authentication.

	Comparison		
		PPFR _h	PPFR _{sp}
B ₂	Computation Cost	$O(s \cdot Fr(A))$ s is the hash space size.	O(Fr(B))
e uce	Communica- tion Cost	$O(K \cdot s \cdot Fr(A))$ K is the encryption key size.	$O(k \cdot l)$ k is the size of path. l is the number of (B_i, C_j) pairs.
sage	Security (Semi-honest	More secure.	Less secure. A gets the exact number of

assumption)


common friends


In all, PPFR_h is more secure under assumption and PPFR_{sp} is more efficient and accurate. Our protocols act as a trade-off among security, efficiency, and accuracy thereby providing more flexibility to the users.

[1] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In *Proceedings of the 17th* international conference on Theory and application of cryptographic techniques, Springer-Verlag, 1999.

[2] W. Jiang, L. Si, and J. Li. Protecting source privacy in federated search. In *Proceedings of the 30th annual* international ACM SIGIR conference on Research and development in information retrieval, 2007.

[3] A. Shamir. How to share a secret. *Communications of the* ACM, 22(11):612–613, 1979.

