

The Center for Education and Research in Information Assurance and Security

Differential Identifiability[§]

Jaewoo Lee and Chris Clifton Department of Computer Science, Purdue University

Legal Privacy Requirement: Individual Identifiability

HIPAA Safe Harbor Rule

- removal of 18 identifiers (e.g., name, ssn, etc.)
- dates \rightarrow year (merge all ages \geq 90)
- geographic units of at least **20,000 people**

HIPAA safe harbor as probabilistic bound

- bound on the probability of identifying individuals
- 1.7% of US population is male & age \geq 85 (2010 US Census)
- knowing the age, gender and geographic unit can limit to 68 people

 $\Pr[I(i) \in DB \mid Release] \leq \frac{1}{68} \cong 1.5\%$ Privacy goal : $\Pr[\bigotimes \in DB \mid R] \leq \rho$

Differential Privacy: The Hot New Definition

- For all datasets D_1 and D_2 differing at most one element, $\frac{\Pr[\mathcal{M}_f(D_1) = R]}{\Pr[\mathcal{M}_f(D_2) = R]} \le e^{\epsilon}$
- hides individuals in the dataset by making two distributions **indistinguishable** within a factor of e^{ϵ}
- unclear how to set ϵ to meet the privacy goal

Probabilistic Attack[¶]

given $\mathbf{R} = \mathcal{M}_{mean}(DB)$ ω_1 adversary's background knowledge $\boldsymbol{\mathbb{R}}$ people already known as being present in D = DIRI D'={ 🔬 , 💦 } Privi two possibilities Possible worlds VS ω₂ $Pr[\omega_2 = D]_{R_1}$ ω_2 ω_1 $f(\omega_1) = 2$ $f(\omega_2) = 5$ choose one from which R is more likely to be produced as "best guess" if adversary guesses correctly with confidence higher than ρ , privacy is breached For differential privacy, adversary's confidence for two different scenarios is different, even with same ϵ

Differential Identifiability§

- limits the probability of identifying an individual in the database to ρ
- formally defined as $\forall D' = D - \{i\}, \forall i \in U - D'$ $\Pr[I(i) \in I_D | \mathcal{M}_f(D) = R, D'] \leq \rho$

Adversary Model

- What is known to the adversary
 - U : people in the universe & their data
 - **D'**: |D|-1 rows
 - \mathcal{M} : (randomized) privacy mechanism (+ noise distribution)

¶ : appears in ISC 2011 **§** : submitted to KDD '12 and under review

75C-D67.pdf 1

- What the adversary does
 - generates a set of **possible worlds** Ψ
 - Assumed to be equally likely
 - $\Psi = \{D' \cup \{i\} | i \in U\}$
 - For each $\omega \in \Psi$, computes $Pr[\omega = D | R = \mathcal{M}_f(D)]$

Sensitive Range

the largest contribution an individual can make to the output of function

$$S(f) = \max_{\omega, \omega' \in \Psi} |f(\omega) - f(\omega')|$$

Calibrating noise

- $\Gamma(i) = \Pr[I(i) \in I_D | \mathcal{M}_f(D) = R, D']$
- To enforce $\max \Gamma(i) \leq \rho$

* Partial support for this work was provided by MURI award FA9550-08-1-0265 from the Air Force Office of Scientific Research

 $\boldsymbol{\mathcal{L}}$

 \bigcirc