the center for education and research in information assurance and security

Hardening Network Embedded Devices Blake Self, Dr. Eugene Spafford

The goal of this project is to use existing vulnerability mitigation technology on network embedded devices to obtain significant security benefits with a minimal performance hit. For this project, three different linux based router operating systems were examined and modified.

Operating Systems:

OpenWRT DD-WRT Cisco E2100L

Hardware:

Linksys WRT54G V2

- BCM4712 @ 200Mhz
- 16 MB RAM

Linksys WRT54G2 V1

- BCM5354 @ 240 Mhz
- 16 MB RAM

Buffalo WHR-G125

- BCM5354 @ 240 Mhz
- 16 MB RAM

Linksys E2100L

- AR9130 @ 400 Mhz
- 64 MB RAM

Security Systems:

Grsecurity

PaX

Key Technologies:

Role-based access control

Capability auditing

Hide kernel processes

Enhanced chroot restrictions

Security alerts and audits that contain the IP address of the person causing the alert

Randomization of stack and mmap base

Randomization of heap base

Bounds checks user/kernel copying into/from kernel heap

No kernel modification via /dev/mem, /dev/kmem, or /dev/port

Reduction of the risk of sensitive information being leaked by arbitrary-read kernel bugs

Sanitizes memory at the lowest level of the kernel allocator Deterrence of exploit bruteforcing

Stock Router Hardened Router Fixed Size No/Limited Access Control RBAC Stack No/Limited chroot Enhanced chroot Fixed Size via Kernel and System Modifications Randomized Addresses Predictable Addresses Libraries/mmap Libraries/mmap **Detailed Alerts** Poor Alerts Random Gap Bruteforce "Friendly" Bruteforce Resistant No Bounds Checking **Bounds Checking** Executable Executable SanitizedMemory **Unsanitized Memory** grsecurity Fixed Size

Random Gap

Stack

Random Gap

Random Gap

Random Gap