
Signature/Slicing
Analysis for SoftwareAnalysis for Software

Validation.

Wh t i Si t ?What is a Signature?

“A distinctive mark, characteristic, or
sound indicating identity”sound indicating identity
The previous definition leads to many

ti f Si t A l ioptions for Signature Analysis even
limiting the topics to computer
systems.

Wh t i Si t ?What is a Signature?

Typically Signatures related
to any electronic systems
are referring to signals.
However, in order to

l it fl ianalyze security flaws in
binaries we need to make a
very specific definitionvery specific definition
related to control flow of
machine code.ac e code

Wh t i Si t ?What is a Signature?

A signature for the
purposes of code
detection (malicious ordetection (malicious or
not) then needs to be
something representing a g p g
desired behavior through
static analysis.
Th f d fiTherefore we can define
our signature to be a
unique string of machine u que s g o ac e
code opcodes.

Importance of Control Flow Analysis

Because of the nature
of machine code, just
searching for the
string of instructions
is insufficientis insufficient.
Therefore
comprehension ofcomprehension of
control flow is
necessary for ecessa y o
analysis to take place.

Importance of Control Flow Analysis

Machine code can be sectioned into
“Basic Blocks”.
Basic Blocks have one entry point, one
exit point and no jumps except for the lastexit point, and no jumps except for the last
instruction.

Importance of Control Flow Analysis

Basic Blocks directly before Basic Block ‘x’ inBasic Blocks directly before Basic Block x in
execution are known as “Predecessors” of ‘x’.
Conversely, Blocks directly after ‘x’ in y, y
execution are known as “Successors” of ‘x’.
One can now produce a Control Flow Graph
by:by:

Treating Basic Blocks as nodes in a directed
graph.g p
Generating directed edges as dictated by the
predecessors and successors for every basic
blockblock
Eliminate any duplicate edges.

Importance of Control Flow AnalysisImportance of Control Flow Analysis

Importance of Control Flow Analysis

A Control Flow Graph gives us the outline
of every possible flow of execution. y p
If Signatures Analysis is applied by
checking the Control Flow Graph of achecking the Control Flow Graph of a
binary for a set of Signatures, we can be
assured all possible execution scenariosassured all possible execution scenarios
will be analyzed.

Issues arising with ControlIssues arising with Control
Flow/Signature Analysis:

NOP equivalent instructions, and groups of
instructions
Computed Jump issues with Control Flow
Analysis.

Data Flow Analysis is needed to solve
computed jumps
C t d j l ti d d fComputed jump solutions are needed for
control-flow analysis.
Control Flow Analysis is needed for Data FlowControl Flow Analysis is needed for Data Flow.

M li i d d t tiMalicious code detection

Create a list of Signatures representing
known malicious code.
Use Signature Analysis with the malicious
code Signatures to detect malicious code
in an application.
Now we know where the code is, but how
can we analyze what the code might
affect?

C d Sli iCode Slicing

A code analysis method to determine which
parts of a program may affect (backward slice)
or be affected by (forward slice) variable values
at some point of interest.
Wh bi d ith Si t A l iWhen combined with Signature Analysis we can
see if other parts of the code may be affected by
the detected malicious codethe detected malicious code.
http://www.cs.wisc.edu/wpis/html/

C d Sli iCode Slicing

An application of
graph theory.
St t ith C t lStarts with a Control
Flow Graph (which
we have alreadywe have already
looked at).
Next milestone is a
Program Dependence
Graph. (PDG)

C d Sli i (PDG)Code Slicing (PDG)

Made up of Flow
Dependence and
Control Dependence
Graphs.
I t d l li iIntraprocedural slicing
can be accomplished
with only a PDGwith only a PDG.

C d Sli i (PDG) (FDG)Code Slicing (PDG) (FDG)

Flow Dependence (sometimes called Data
Dependence) is sometimes referred to as the
“set-use analysis” or “def-use analysis”.
For every instruction a node is created. If a

i bl l i t i i d th tvariable value is set in a given node then an out
edge is created to the node containing
instructions in which the variable value is usedinstructions in which the variable value is used.

C d Sli i (PDG) (FDG)Code Slicing (PDG) (FDG)

Set – mov 42, ax
Use – add bx, axUse add bx, ax

The above is also another set since the
x86 add uses the 2nd register as thex86 add uses the 2nd register as the
destination.

C d Sli i (PDG) (FDG)Code Slicing (PDG) (FDG)

mov bx, <address>
mov ax, [bx]mov ax, [bx]
call ax

Th t d b il fThese are generated by compilers for
exception handlers and function pointers.
M k l i f bi i hMakes analysis of binaries much more
difficult than analysis of source.

C d Sli i (PDG) (CDG)Code Slicing (PDG) (CDG)

Control Dependence is a graph
representing “reachability”.p g y
For every conditional statement a node is
created and a “true” out edge is added tocreated and a true out edge is added to
instructions reachable only if the statement
is true The same is done for falseis true. The same is done for false
conditions.

C d Sli i (PDG) (CDG)Code Slicing (PDG) (CDG)

Because of the lack of
structure of machine
code a CDG can becode a CDG can be
more difficult to
generate than one g
from source code.
Combining the CFG

d th CDG f thand the CDG for the
entire application
leads to dead-code eads o dead code
analysis

C d Sli i (PDG)Code Slicing (PDG)

The combination of the FDG and the CDG
is the PDG for a procedure.p
Intraprocedural Slicing is now possible.
However Intraprocedural Slicing is notHowever, Intraprocedural Slicing is not
sufficient. We need to know everything in
the application that might be affectedthe application that might be affected.

C d Sli i (SDG)Code Slicing (SDG)

The System Dependence Graph is a
combination of all the PDGs in an
applicationapplication.
Generated by

Creating out edges from passed parametersCreating out-edges from passed parameters
to the corresponding parameters in the
procedure being called.
C ti t d f th t d l fCreating out-edges from the returned value of
the procedure to the variable being set with
the return value in the caller.

C d Sli i E lCode Slicing Example
mov 5, ax
mov 4, bx
dd badd ax, bx

cmp_lbl: cmp ax, bx
jl my lbljl my_lbl
jmp end

my lbl: mov ax, bxy_
jmp cmp_lbl

end:

C d Sli i E l (FDG)Code Slicing Example(FDG)
mov 5, ax
mov 5, bx
add ax, bx

cmp_lbl:cmp ax, bx
jl my_lbl
jmp end

lbl bmy_lbl:mov ax, bx
jmp cmp_lbl

end:

C d Sli i E l (CDG)Code Slicing Example (CDG)
mov 5, ax
mov 4, bx
add ax, bx

cmp lbl:cmp ax bxcmp_lbl:cmp ax, bx
jl my_lbl
jmp end

my_lbl:mov ax, bx
jmp cmp_lbl

end:

C d Sli i E l (PDG)Code Slicing Example (PDG)
mov 5, ax
mov 4, bx
add ax, bx

cmp_lbl:cmp ax, bx
jl my_lbl
jmp end

lbl bmy_lbl:mov ax, bx
jmp cmp_lbl

end:

C d Sli i E l (SDG)Code Slicing Example (SDG)

There are no other procedures in the
current example therefore the PDG shown p
is already a System Dependence Graph.
But if we were to replace the “add”But, if we were to replace the add
instruction with an add procedure, the
SDG would be created in the followingSDG would be created in the following
way…

C d Sli i E l (SDG)Code Slicing Example (SDG)
The call has out
edges to theedges to the
parameters 5 and 4.
The parameters have
out edges to where
they are set in the
procedure (Flow p (
Dependence)
Also the return value
has an out edge to itshas an out edge to its
retrieval in the calling
procedure.
Th t i lThe rest is normal
Flow and Control
Dependence

Code Slicing ExampleCode Slicing Example
(Backward Slice (add ax, bx))

Code Slicing ExampleCode Slicing Example
(Backward Slice (add ax, bx))

Code Slicing ExampleCode Slicing Example
(Backward Slice (add ax, bx))

mov 5, ax
mov 4, bx
add ax, bx,

cmp_lbl:cmp ax, bx
jl my_lbl
jmp endj p

my_lbl:mov ax, bx
jmp cmp_lbl

end:end:

Code Slicing ExampleCode Slicing Example
(Forward Slice (add ax, bx))

Code Slicing ExampleCode Slicing Example
(Forward Slice (add ax, bx))

mov 5, ax
mov 4, bx
add ax, bx

cmp_lbl:cmp ax, bx
jl my_lbl
jmp end

lbl bmy_lbl:mov ax, bx
jmp cmp_lbl

end:

P bl ith C d Sli iProblems with Code Slicing

Any error in analysis could quite possibly
lead to a completely incorrect code slice.
Th t f d d t t llThe amount of space needed to store all
these graphs is very great. Following are
some metrics from my colleague’s Codesome metrics from my colleague s Code
Slicer implementation:

Originally a 1MB sized binary would break
Gthe 2GB limit.

Down to 584 megs now.
Used to take ~20 minutesUsed to take ~20 minutes
Now takes ~1 minute

How can Signature/Code SlicingHow can Signature/Code Slicing
analysis be used?

Can actually be used to assist in Signature y g
Analysis.
The problem with NOP kinds of
i i /i i b ll i dinstructions/instruction sets can be alleviated
due to proper analysis of a code slice.
Find a possible Signature start and a possibleFind a possible Signature start and a possible
Signature end in a binary then perform a forward
and backward slice on each instruction included.
If any code does not affect the rest of the
Signature or binary then the code be excluded
as “do nothing code ” (This would not skipas do nothing code. (This would not skip
important code because important code would
be contained within the Signature)

How can Signature/Code SlicingHow can Signature/Code Slicing
analysis be used?

The best and most desirable security is to
have a resilient and hardened program p g
from release.
Run Code Slicing Analysis on a signatureRun Code Slicing Analysis on a signature.
Create possible out-edges in the
appropriate places (if something is definedappropriate places (if something is defined
in the Signature, but not used etc.).

How can Signature/Code SlicingHow can Signature/Code Slicing
analysis be used?

For Flow Dependence the possible out-edges
would tell you which registers used in a certain
way might be affected by a known security
threat.
F C t l D d th ibl t dFor Control Dependence the possible out-edges
would tell you where else in the application a
given Signature might cause a jump to or if agiven Signature might cause a jump to or if a
section of code might be skipped entirely.

How can Signature/Code SlicingHow can Signature/Code Slicing
analysis be used?

Note: Analyzing Flow Dependence and
Control Dependence in the given way p g y
requires to not just know the algorithm for
Code Slicing Analysis but to truly g y y
understand what a Code Slice represents.

How can Signature/Code SlicingHow can Signature/Code Slicing
analysis be used?

Code Slicing Analysis gives some additional
insight into the behavior of the malicious code
represented by the Signature.
The behavior can then be caught by a g y
separate thread or process which
understands what threats are possible in
what locations and to alert and/or deal with
the problem.

I f ti d Q tiInformation and Questions

Adam Dugger
adugger@arxan.comadugger@arxan.com
www.arxan.com

Any questions?Any questions?

