
SANTA FE, NEW MEXICO, DECEMBER 5-9, 1988 125

The Des ign of a Document Database
Chris Clifton

Hector Garcia-Molina
Princeton University

Robert H a g m a n n
Xerox Palo Alto Research Center

Abstract
In th is paper a Document Base M a n a g e m e n t Sys-
tem is proposed t h a t incorporates convent ional
d a t a b a s e and hype r t ex t ideas into a document
da tabase . The Document Base operates as a
server, users access the d a t a b a s e th rough
different application programs. The query
l anguage which appl ica t ions use to re t r ieve docu-
men t s is described.

I n t r o d u c t i o n

Convent ional d a t a b a s e sys tems evolved as a
rep lacement for d a t a stored as ind iv idua l records
in a file system. Sys tems such as INGRES[1] and
Sys tem R[2] provide for d a t a in tegr i ty , shar ing ,
securi ty, and efficient searching and informat ion
retr ieval . However, these sys tems a re al l based
on fixed-length, h igh ly s t ruc tured records of
information. Not al l informat ion can be con-
venien t ly represented with such a model[3]. In
par t icu la r , documents mus t be represented as
uns t ruc tured , un in t e rp re t ed str ings, m a k i n g i t
difficult to cap ture the i r s t ructure , propert ies,
and in ter - re la t ionships .

Our objective is to implemen t a Document
Base System t h a t provides for in tegr i ty , shar ing,
securi ty, and efficient searching of documents.
The document model we propose for this system
is genera l enough t h a t is supports a hype r t ex t
view of documents (l inks and nodes), as well as
t r ad i t iona l l inear documents. I t is flexible

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1988 ACM 0-89791-291-8/88/0012/0125 $1.50

enough so t h a t documents can be source pro-
grams, circuit layouts , d i ag rams or pictures. The
system has the searching and re t r ieval capabi l i -
t ies of t r ad i t iona l informat ion re t r ieva l sys tems
(e.g., keyword searches), as well as da t abase facil-
i t ies such as t ransact ions , versions, and d a t a dic-
t ionaries .

We see documents as being composed of both
s t ruc tured and uns t ruc tu red information. The
s t ruc tured informat ion represents the proper t ies
of the document and can be used for searching.
Examples of s t ruc tured informat ion are key-
words, names of au thors , t i t les, references to
other documents (links), source l anguage (e.g.,
LISP, C), technology (e.g., NMOS, CMOS), and so
on. Uns t ruc tu red information, such as basic t ex t
and d i a g r a m s is stored and retr ieved by the sys-
tem bu t is not used in searching. Inc identa l ly ,
the represen ta t ion of text as pa r t i a l ly s t ruc tured
informat ion has been explored in the Informat ion
Lens project a t MIT[4], and has been found to be
a useful tool from the h u m a n viewpoint . We
believe t h a t considering documents to be par-
t i a l ly s t ruc tured is useful for d a t a b a s e design as
well.

In m a n y cases we expect the document base
system to run on a separa te machine or environ-
men t from the end user. Thus, our view is t ha t
mul t ip le appl icat ions at var ious works ta t ions
send requests to a document server. In l ight of
this, one of the key requ i rements for our sys tem
is t h a t it have a powerful non-nav iga t iona l Docu-
ment Manipulation Language (DML) tha t
reduces the number of user-system interact ions.
For instance, suppose t ha t a user has identif ied a
set of documents of interest . The user would now
l ike to find all documents t h a t a re referenced in
the b ib l iographies of the in i t i a l set of documents
t ha t have the keyword "cat" occurring within 50
posit ions of the word "dog". However, only the
abs t rac ts of these documents a re to be retr ieved.
We would like th is type of request to involve a

126 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

single interaction with the system. The user
sends the DML query, the system searches (possi-
bly) many documents, and returns only the
relevant data. For the search, the system can
use auxiliary search structures (e.g., keyword
indexes). This is analogous to the way conven-
tional relational systems operate: the user
describes the data of interest, and the system
determines how and what to search. The stra-
tegy is very different from that used in most
hypertext systems, where each link has to be
explicitly explored under control of the end user.
Our approach permits more efficient searches,
reduces the amount of data transferred to the
user, and cuts down the number of requests.

It is important to note that the DML is not a
full programming language. In this we are fol-
lowing the precedents of database languages such
as SQL[5] and QUEL[6]. Applications that
access documents will be written in a conven-
tional (host) programming language with embed-
ded DML statements. This provides for a clean
break between document retrieval tasks which
should be done at the server and presentation
issues which are handled by the application. It
also provides a degree of security at the server ,
since running arbitrary user code at the server
would be dangerous. We stress that the DML is
not a human interface. Humans interact with
the application running at their workstation,
which in turn makes the necessary DML calls.

In this paper we present the document model
and manipulation language. Because of space
limitations we will simply highlight the main
features and give representative examples. After
describing the DML, we will very briefly discuss
other related aspects of our system such as
indexes, version management, memory organiza-
tion, and triggers. Finally, we also include a
short section listing some of the previous work in
this area.

D o c u m e n t Model

A document consists of a set of triples. Each tri-
ple contains a type, a key, and a data item. The
triple type serves two functions: it identifies the
purpose of the triple and defines the actual types
of the key and data fields. The key is a struc-
tured field used for searching. The data field
may be used for searching in some cases, but may
also contain unstructured data such as text or
pictures. The following is a sample document:

{(string, "title",
"The Design of a Document Database")

(string, "author", "Chris Clifton")
(keyword, "hypertext", 35)
(keyword, "database", 76)
(keyword, "hypertext", 83)
(pointer, "reference",

<poin ter to a document>)
(integer, "pages", 15)
(text, "Introduction", "Text goes here...")
(contents, <poin ter to a document>, 1)
(contents, <poin ter to a document>, 2) }

The first two triples record the fact that this
document has two properties of type string.
These properties are named (for search purposes)
"title" and "author." The triple type "string"
defines that both the key and data fields are of
type string, with key probably being a short
string of fixed length. This definition of the tri-
ple type "string" is stored by the system is a type
table. Some of these types are defined by the sys-
tem, but other definitions can be added by users.
Type definitions extend across the system, which
encourages the sharing of data between applica-
tions. (Structured type names, such as
Hector/keyword and Chris/keyword, can be used
to allow different users to use the same name for
different purposes if desired.) The primitive
types that are allowed for key and data items are
discussed later.

The triple type "keyword" specifies that the
triple contains a document keyword (short string)
and its position in the document (integer). This
triple type is recognized by the system for build-
ing keyword indexes. Note that the system
treats the position field simply as an integer, and
it is up to the application to interpret this posi-
tion as bytes or words within the document.
These keywords probably appear somewhere in
the "text" triple, but the system is not aware of
this. It is up to the application to maintain the
consistency of the text and the keywords. (Note
that there may be types in addition to keyword
that have associated index structures.)

The document model we are proposing here
is relatively simple. One reason is that our objec-
tive is a common model for different applications,
a type of "common denominator". This means
that the semantics of each document property
cannot be understood by the system. A second
reason is efficiency. If the document server is to
efficiently examine large numbers of documents,
the properties used for searching must be simple
and compact. A third reason is that the complex-
ity of the DML is proportional to the complexity
of the model. Since we desire a simple language
(to be described in the next section), we require a
simple document model. However, in spite of the
model simplicity, we believe that it is sufficiently
powerful.

To illustrate these points, consider the
"'pointer" triple illustrated in our sample docu-
ment. The pointer has a simple label that can be
used for searches, but contains no other struc-
ture If the application does attach more infor-
mation to links (as in some hypertext systems), it
can define a complex link type consisting of a

SANTA FE. NEW MEXICO, DECEMBER 5-9, 198~ 127

simple pointer and unstructured data field with
all the information encoded in it. When the
application wishes to examine a link, the data
field can be retrieved and examined. With this
approach, however, the system cannot search on
these link properties. If this is desired, a second
option is to make the link a document in itself.
In this case, the original document contains a
simple pointer to the link document. The link
then contains the relevant properties (e.g., date,
name, color, etc.) as well as one or more pointers
to other documents. In summary, applications
that require a richer structure than what is pro-
vided by the basic model can provide it for them-
selves. (Incidentally, our system does provide
other primitive pointer types: version pointers
and back pointers. These will be discussed later.)

Note that documents are represented as sets,
so triples are not ordered within a document.
This restriction substantially simplifies our
language. Ordering can be obtained by linking
the components together (e.g., part A points to
part B which points to part C). As an alterna-
tive, ordering can be indicated by the data field,
as illustrated by the last two triples of our sam-
ple document.

Document Manipulation Language

The DML is used to represent queries. The
queries we wish to support fall into two primary
types:
• Document retrieval along pointer chains. This

is important both for references and for retriev-
ing parts of documents. These queries are the
major difference between hypertext and conven-
tional databases.

• Searches for documents meeting particular cri-
teria. These are related to conventional data-
base queries. The queries will look for specifics
like document keywords. They may also look
for types of relationships between documents
(particular patterns of pointers to other docu-
ments.)

In addition to queries which retrieve entire
documents, we need queries that retrieve selected
triples from within a document. For example, we
may desire abstracts rather than entire docu-
ments.

Most query operations take a document (or
set of documents), and return a new document (or
set) without modifying the original document.
Changes to a document are made with functions
which operate on a single document.

It must be remembered that the DML is
embedded in a host programming language.
Document identifiers are actually stored in vari-
ables in the host language. The DML is not in
itself a "complete" programming language, nor is
it intended as a user interface. It is a query
language for use by applications programmers.

Set operations

Since documents are structured as sets, the basic
set operations, union (U) intersection (~) and
difference (-) are provided. Each binary opera-
tor takes two documents, and returns a new
document (set of triples) as appropriate for the
operation.

For example, A U B would return a new
document consisting of all the triples contained
in A and all the triples in B. As discussed above,
A and B are variables in the host language, not
the actual documents. The statement

AUB--~B

leaves B pointing to a new document which is the
union of the documents (sets of triples) originally
pointed to by A and B. The original documents
are not destroyed. This newly created document
is temporary (it will disappear when the applica-
tion terminates) unless another document points
to it. Creating pointers and adding them to docu-
ments will be discussed later.

Basic filters

These are operations which take a document, and
return a new document which may include a sub-
set of triples or modified triples of the original
document. They operate by looking for particular
triples, primarily based on the triple-type and
key, and performing an operation such as adding
the triple to the document being created.

Filters are based on triple selection using
pattern matching. Perhaps it is easiest to start
with an example. Given a document (document
id) D, we can construct a new document consist-
ing of just the authors of the original document
as follows:

D(string, "author" , ?) - * document id

This is the triple selection filter. Note the use of
the ?. This is a pattern matching character,
which in fact matches any data item. It can also
be used in the key or type fields.

Filters can also be joined using and, or and
not. For example,

D((string, "author" , "Chris*") OR
(string, "author" , "Hector*"))

--~ document id

returns author triples in D which have either
Chris or Hector as the prefix of the data.

Sets of Documents

A user of a database may wish to limit queries to
some subset of the entire database. This docu-
ment database provides document sets to facili-
tate this. In most cases, a document base will
contain a root set of all the documents in the
database, much like a l i b r a , card catalog. This
allows searches cwer the entire database

128 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

However, the use of sets allows the scope of
queries to be restricted if desired. This has a
number of uses: A single query could construct a
set on which a variety of further queries can
operate, a user can repeatedly restrict the docu-
ments of interest without having to repeat
queries, or a query could operate on an already
existing "mini-database". The root set could also
serve as the root of a directory (the documents in
root would be sets), allowing a hierarchical struc-
ture of the data.

Another advantage of queries on sets is that
it gives the user an idea of the complexity of a
query. The t ime requi red to execute a query is
d i rect ly re la ted to the n u m b e r of documents in
t he quer ied set. Thus the user has some control
over and knowledge of the t ime a query will t ake
based on the size of the set queried.

Sets a re ac tua l ly a type of document . This is
done us ing t r ip les con ta in ing pointers . A set is
s imply a document con ta in ing poin ters to other
documents . Document S in F igure 1 is an exam-
ple of a set con ta in ing the documents A, B, C,
and F. This represen ta t ion has a n u m b e r of
a d v a n t a g e s over us ing a s epa ra t e d a t a type for
sets:
• The l a n g u a g e has a single set of operators .

Every object in the system is a document .
• Sets can be pe rmanen t , in the same m a n n e r as

a document is m a d e pe rmanen t . This al lows
users to bui ld "pr iva te l ibraries".

• I t is easy to bu i ld anno ta t ed bibl iographies ;
since a set is a document , associa t ing text , key-
words, and other informat ion wi th i t is simple.

• A paper which contains references can also be
used as a set of the referenced documents. This
al lows easy " l i t e r a tu re search" operat ions.

The set operat ions ment ioned above for sin-
gle documents also have the appropr ia te m e a n i n g
for sets of documents defined in the above
fashion. Since two sets S and T are ac tua l ly sets
of triples, where each t r iple points to a document
in the set, S U T produces a new set of t r ip les
which points to al l of the documents in e i ther S
or T. In fact the p r imary use of these opera t ions
is l ike ly to be on documents which are considered
to be "sets of documents" r a the r t han on indivi-
dua l documents .

Set filters

Set filters a re queries used to select documents
mee t ing pa r t i cu l a r cri ter ia . For example , we
m a y wish to find al l documents by a pa r t i c u l a r
au thor , or al l documents which reference a given
paper . These opera te by selecting documents out
of a set, r a t h e r t h a n the ent i re da tabase .

Basic filters select ind iv idua l t r iples from a
document based on the proper t ies of those tr iples.
Wi th sets, we wan t to select documents from the
set based on propert ies of the document poin ted
to. For example , in F igure 1 a query on set S
would create a new set based on propert ies of A,
B, C, and F r a t h e r t han on proper t ies of t r ip les in
S. This requires a different filter operat ion.
These quer ies use the [operator , combined with
filters which are s imi la r to the single document
filters discussed above. As an example , to select
those documents from the set (document of
pointers) S which were wr i t t en by e i ther Chr is or
Hector we could use

S [((string, "author", "Chris*") OR
(string, "author", "Hector*"))

--~ d o c u m e n t i d

An equ iva len t s t a t e m e n t would be

A

string a u t h o r Chris ...

pointer reference

S
B

l , .=

pointer :reference i I I

~-~ string author Hector pointer reference : -" /
pointer referencel l . pointer reference

pointer reference!

• kevword cat

[pointer reference

C

35

Figure 1. Set S containing documents A, B, and C.

I It I
D

string Title i Design ...

E

F

pointer Biblio... i

SANTA FE. NEW MEXICO. DECEMBER 5-9, 1988 129

((S I (string, "author" , "Chris*")) U
(S I (string, "author" , "Hector*")))

--~ document id

Wild cards (?) can also be used here.
Some sample queries are:

Select documents in S with keyword "cat" and
place them in document T.

S I (keyword, "cat", ?) --~ T
Select documents with keyword having

prefix "ca" .
S I (keyword, "ca*", ?) --~ T

Select documents having keyword matching
"?a?" occurring after the 30th word
in the document.

S I (keyword, "?a?". >30) --~ T
Select documents with either "cat" or "dog"

as a keyword.
S I (keyword, "cat", 7) OR

(keyword. "dog". ?) --~ T
Select documents having "Princeton" as a

keyword or in the title.
S I (keyword, "Princeton", ?) OR

(string. " t i t le". "*Pr inceton*") ~ T
Select documents having both "cat"

and "dog" keywords.
S I (keyword. "cat". ?) [

(keyword, "dog", 7) --~ T
In the above query we could have used AND;
using two filters has the same result (first select
documents with "cat", then from that set choose
those that have "dog".)

Matching variables

Related to wild cards are pattern matching vari-
ables. These are wild card characters which must
match at various points in an expression. As an
example, let us select documents from the set S
with "cat" and "dog" keywords within 10 words of
each other:

S] (keyword, "cat", ?X) I
(keyword, "dog", Ix-71< 10) -~ T

In the first filter, all values of the position of
"cat" in each document are found. The second
filter is satisfied if there is a "dog" within 10
words of any "cat" in the document under con-
sideration.

The occurrence of the variable preceded by ?
specifies that it is free; without the ? it is bound.
Filters are evaluated left to right, hence the left-
most occurrence of a variable should be a free
occurrence (otherwise nothing will match.)
Further free occurrences add to the set of possible
values for the variable for that document.

Some more complex examples using set
filters and matching variables are:

Select documents with at least two occurrences of
"cat", at least one of which is after position 27.

S] (keyword, "cat". ?X) I

(keyword, "cat", X~?Y A Y>27) --~ T
Select documents with second "cat"

after position 27.
S I (keyword, "cat", 7X-<27)]

(keyword, "cat", 7Y > 27)]
not (keyword. "cat", <X) I
not (keyword, "cat", X < ? < Y) --~ T

The actual semantics of pattern matching
variables are similar to Prolog unification[7].
Their use is also related to joins in a relational
database. The variables are bound to any pair of
triples that may cause them to match. However,
the filters restrict the scope of triples available
for matching. This simplifies the problem of
finding matches efficiently. Another way of
thinking of them is that each instance of a docu-
ment passing through a filter has its own set of
pattern matching variables. Each variable is
actually a set of values which it matches in that
document. An expression using the variable is
true if any of the values in the set would make
the expression true.

We have not yet shown how to actually
manipulate the data items found with filters.
This is because such manipulation is left to the
application, and as such should be written in the
language used to write the application. However,
the data must be available to the host language.
This is done using pattern matching variables,
which can be defined as accessible to the pro-
gramming language. The operators used are --,X
and <-X, where X is defined in the programming
language. The --~ causes the value from the tri-
ple to be placed in the variable. This binding
holds for the execution of set of code bound to the
DML expression. If multiple values exist which
match the variable, the code is executed once for
each possible binding. This is similar to the
manner in which conventional embedded data-
base languages operate. As an example, to print
the authors of document D using a routine
display_author written in the host language, we
write:

D(string, "author", -*X)
{d isp lay author(X) }

The ~ causes the matching variable to be
bound to the current value of the same variable
in the program. ~--X occurs in place of ?X in a
query.

Pointer operations

In order to allow following of pointers, two dere-
ferencing operations are provided. These are I 'X
and 1'1'X, where X is a matching variable. The
first is a simple dereference; it returns the docu-
ment pointed to. The second gives both the docu-
ment pointed to and the original document.
These are best shown by example:

S] (pointer, "reference", ?X)] 1' X --~ T.

130 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

produces the documents referenced by documents
in S. T l is itself a set (document of pointers), and
can be operated on in the same manner as S.
Looking back at Figure I, we see that T l con-
tains D and E. If we wish to retain the pointing
documents we use a 11' :

S I (pointer, " reference", ?X) I 1`1`X --~ T 2

returns the documents referenced to by docu-
ments in S and the referencing documents. Note
that this is not all of the documents in S. The
first filter removes documents that do not contain
references. Using Figure 1, T~ would be { A B C
D E} . Note that F i s not in the set, as it does
not contain a reference pointer.

Some more examples are:

Place documents bibliographically referenced
by documents in S into T.

S I (pointer, "Bib l iographic" , ?X) I 1'X - * T
Documents referenced with either Bibliographic

or foo references.
S I (pointer, "B ib l iographic" , ?X) OR

(reference, " foo" , ?X) I 1' X --~ T
References of documents with keyword "cat".

S I (keyword, "cat" , ?) I
(pointer, " reference", ?X) I 1' X --~ T

Documents which are references of documents
in S, where the referenced document has
the keyword "cat".

S I (pointer, " reference", ?X) I 1' X I
(keyword, "cat" , ?) --~ T

Pointer operations can also be used with
basic filters; for example

D (pointer, " reference", ?X) I 1'X --~ T 3
produces the documents referenced in D. Note
that T 3 is a set. Since a set of documents is sim-
ply a document containing pointers, the above
statement simply strips non-pointers from D. An
equivalent statement would be

D (pointer, " reference", ?) --~ T 3

Iteration

Sometimes we may want to follow pointers
repetitively. To handle this, an iteration opera-
tion is provided. For example, we can find the
papers referenced by those papers referenced by a
given set S (two hops away from the given docu-
ment) as follows:

S [] (pointer, " reference", ?X) I ~ X]2 ._~ T
The operations within [] are repeated as many
times as indicated by the number given after the
second bracket; the above statement is equivalent
to:

S I (pointer, "reference", ?X) [1' X I
(pointer, " reference", ?Y) I ~ Y --~ T

Note that this is not quite syntactically
equivalent; the matching variable X is rebound
each time through the iteration.

When used with the ~ X operator, the query
finds all documents within two hops (that is, the
document, those one link away, and those two
links away):

S [I (pointer, " reference", ?X) I ~ X]2 ._~ T
Note that we are apparently processing the origi-
nal documents twice. In the first iteration, we
find all of the documents one link away from
those in the set. The second time, we repeat this,
as well as finding documents two links away.
Since the result is a set, the duplicates are elim-
inated. It should be remembered that this is a
semantic model; the implementation will be
clever in processing such a query and in fact only
process each document once.

If we want to find all documents within a
tree rooted at the current set, we can use the *
operation:

S [I (pointer, " reference", ?X) I ~ X]* --~ T
Note that this repeats the operation in brackets
until the result reaches a fixed point;

S [I (pointer, " reference", ?X) I 1' X]" --~ T
would return the empty set, as it would continue
until there were no more referenced documents.
Also note that as defined, this last query would
not terminate if there were a cycle of references.
Such situations will be detected and an error
returned.

A simple implementation of iteration, merely
repeating the given query until no new docu-
ments are found, would result in documents
being needlessly being reprocessed. The repro-
cessing is inefficient but does not produce
incorrect results, even if dereferencing is part of
the query. To eliminate reprocessing altogether,
we can associate an "already processed by this
iterator" mark with each document while the
query is being processed.

In addition, a level number (based on the
number of iterations of the query) can be
attached to each document. De-referencing
operations will copy this level number (but not
the already processed mark) to the new docu-
ment. As each document finishes the query, this
information can be used to determine if it should
be run through the query again (no already pro-
cessed mark and level number less than the
number of iterations desired, in which case the
mark is set and level incremented) or passed on
to the next part of the query. Note that this
information can be placed with other such run-
time data, such as possible values for matching
variables.

This implementation would allow iteration to
be done with only a single pass over each

SANTA FE. NEW MEXICO, DECEMBER 5-9, 1988 131

document which is potentially in the result. In
fact most of these queries require only a single
pass over the documents in the original set, or in
the case of dereferencing, over the descendants of
that set. In addition, this design allows for easy
extensions to a parallel implementation.

Basic operations

The filter operations only provide for selecting
documents, not modifying (or even creating)
them. In addition to queries, there is a simple
functional interface to the system. The simplest
of these functions is create document, which
returns a document identifier. The actual opera-
tion is:

create document() --~ document identifier
The result of this function may be used in any
manner appropriate in the host language; assign-
ment to a variable would be a common use.

A copy operation is also provided. The use of
copy is:

copydocument(document id)
--~ new document id

The delete operation removes a document
from the database.

delete(document id)
Attempts to reference a deleted document will be
detected and an error will be returned. After
further study we may choose garbage collection
over explicit deletion.

There are also operations which can be used
to make changes to existing documents. These
work at the triple level. The basic ones are add
and delete triple.

add triple(document id, t r i p l e type,
key, data)

delete triple(document id, t r i p l e type,
key, data)

A modify operation for triples could also be
added; currently this will be done using delete
and add.

System description

As mentioned earlier, this paper primarily
discusses the Document ManipUlation Language.
Designing a document base poses a number of
other problems. Some of our ideas on these
issues are listed here.

Basic data types

We propose a limited type system. This is less
general than, say, an object oriented system. The
limited domain of applications (documents), how-
ever, reduces the need for generality, and there
are advantages in efficiency and ease of prototyp-
ing which result from having such a type system.

Unstructured data types are provided for applica-
tions which require them. The document base
manager will not be able to perform as many
operations directly on these types, however.

The operations on these types are not defined
in this paper. In most cases, the appropriate
operations are obvious. The interface to the host
programming language is similar to that for the
basic DML operations described previously.

Short (fixed-length) types

The following data types can be operated on
directly in non-trivial ways by the hypertext sys-
tem. They are intended for use in the key field
in a triple.
• Words are short character strings. Typically

uses are for keywords or index entries. An idea
for an efficient fixed-length representation of
words is mentioned later.

• Numeric data types (including dates, times,
reals, etc.) and appropriate numeric operations
will be supported.

• Pointers are perhaps the primary thing which
sets hypertext apart from conventional docu-
ments. Note tha t since a pointer is actually
embedded in a triple, the type and key (or type
and data) fields can be used to at tach informa-
tion to the link.

One method of specifying that a
document contains another.

(poi nter, "contai ns",
<pointer to sub-document>)

More complex method, using triple-type
to specify information.

(chapter, "One",
<pointer to chapter (sub-document)>)

(Appendix, "A", pointer to appendix)
The pointers we have described up to this

point are simple pointers to documents, uninter-
preted by the system. Our system will provide at
least two stronger types of pointers. The inser-
tion of a triple of the form (strong-pointer, key,
<poin te r>) in a document D will force the inser-
tion of a triple (back-pointer, key, <pointer to
D >) in the referenced document. The system
will not allow the deletion of the referenced docu-
ment unless the strong-pointer at D is first
deleted. Note that the pointer and back pointer
within these triples are plain document pointers.
The additional semantics of strong pointers are
enforced at the triple level.

To support document versions, the system
provides some basic support. (More elaborate
mechanisms can be built on top of this.) When
the triple (version, <null pointer>, t imestamp)
is inserted into a document (with t imestamp set
to the largest possible value), this indicates that
the system will keep a linked list (with back
pointers) of the versions of this document. Each

132 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

update to the document creates a new version.
The t imestamp of the older version is set to the
time of the update, and a pointer to the newest
version is stored automatically. Thus, the tail of
the list is the latest version.

A pointer of the form (latest-pointer, key,
<pointer to D >) is followed by the system by
going to document D, and then following the ver-
sion chain to most recent version of the docu-
ment. Hence, even though D points to an older
version, the query that follows this pointer
always gets the latest version. A conventional
pointer (pointer, key, <pointer to D >) will still
get to the older version.

Long (variable-length) types

These are intended for use primarily in the da ta
field. Although of variable length, most will be
relatively compact, the exception being text. In
our prototype, all of the document except for text
data items will be cached in memory. This
speeds queries which do not require looking at
text items.
• Strings are short sequences of characters; at

most a sentence. Standard string operations
will be allowed, but they will be slower than
equivalent operations on words .

• Block is an unstructured type, where the data
is of a small (although not necessarily fixed)
size. Searches will be allowed on this data by
allowing the application to provide (restricted)
functions to determine matches.

• Text is the basic unstructured type. Any opera-
tions which must be performed on text blocks
(other than creation and deletion) must be pro-
vided by the application. This is not only a
medium for the written word; text blocks can
be used for pictures, executable code, or other
data which does not fit into the normal type
system. In our prototype, text will be stored as
a file.

Triple types

These are the actual key-data combination types,
which can be defined by applications. In order to
ease the problem of type definition, each database
will have a "reserved" catalog document. This
will contain the actual specification of each triple
type, including the type name and the physical
types of the key and data. In addition (since the
catalog is a document), a written explanation of
each type will be provided. Although this does
not automatically resolve conflicts in the use of
triple types, it does simplify human resolution of
the problems.

Indexes

Our system will initially provide inverted-list
keyword indexes (other indexes may be added
later.) Each index will be associated with a base

document D and a pointer key label L. The index
at D will serve all documents that are reachable
from D via pointers with key L. The L pointers
are restricted to form a tree. Each document in
the tree will have a back pointer (with key
"back-index") to the index.

As an example, authors may wish to look for
a particular keyword only in documents they
have written. A global database index would
probably not be useful here. However, if each of
the author 's documents are pointed to by a "root"
set for that author, an index at that root would
be appropriate. Of course, each document would
have to contain pointers with the appropriate key
L to all sub-parts of that document. This would
probably be done as part of a "document writing"
application, and the indices and pointers would
be invisible to the end user.

Keyword queries that involve D or its des-
cendants will utilize the index. (Taking full
advantage of an index is a challenging query
optimization problem that we have not addressed
yet.) When a document with back index pointers
is modified, the appropriate index (or indexes)
must be updated if necessary. In particular, if an
L pointer is cut, all the documents down the tree
must be removed from the index.

I t is also possible to have indexes at several
levels within the same tree, with each index
serving its own sub-tree. Another challenging
problem involves taking advantage of sub-
indexes within a tree to reduce the size of a
higher level index.

Representation of Words

The w o r d data type is intended as a search key.
In order to perform these searches more
efficiently, we will use a fixed-length representa-
tion for this type. A structure based on the patri-
cia tree[8] can be used to map keyword--~Z.
Assigning numbers alphabetically allows for sim-
ple lexical comparison. Using 32 bits will give a
sparse mapping, allowing the addition of new
words without changing the old mapping or
interfering with the alphabetical property of the
map.

Transaction management

As in any database, transactions are of some
importance. However, documents may require
new types of transactions; serializability may not
be appropriate. Some form of locking must be
done, this could be based on an explicit check-out
mechanism.

Under consideration are alerters and
triggers, actions which are started when another
action happens in the database such as reading
or writing a document. The difference is that
alerters are "soft", in the sense that they do not
have to happen in as timely a fashion as triggers.

SANTA FE, NEW MEXICO, DECEMBER 5-9, 1988 133

The exact definitions of these are related to tran-
saction management , and further specification
must wait on a better understanding of transac-
tions.

Massive Memory Machine

Our Document Database Management System is
being undertaken as part of the Massive Memory
Machine Project (MMM) at Princeton[9]. The
document system will be implemented on a proto-
type with one gigabyte of main memory. Our
strategy will be to cache in memory only the
structured portion of documents, leaving text
data on secondary storage. Since our document
model is so simple and regular, we expect to be
able to store the in memory portion of the docu-
ments very compactly. This in turn means that
for many queries all of the search data (e.g., key-
words, pointers) will be memory resident, making
it possible to examine vast numbers of docu-
ments. Once the desired documents are
identified, accesses to secondary storage would be
needed to retrieve the bulky parts such as con-
tents of a paper, pictures, etc.

Simply to illustrate, suppose tha t in-memory
part of documents is on the average 500 bytes.
(At 10 bytes per triple, this allows for say 20
pointer triples, 20 keyword triples, and 10 other
triples). A one gigabyte memory can then hold
about 2 million documents. As memory prices
continue to drop and memories grow, this
number will also increase. We would expect a
cache that holds the few million most frequently
accessed documents to reduce the number of
secondary store accesses very significantly, espe-
cially for queries tha t must traverse and examine
large numbers of documents (e.g., searching
through a large library).

O the r Systems

A number of hypertext systems, such as
Notecards[10], Hypercard[11], Textnet[12], Inter-
media[13], and MINOS[14] have been developed.
These systems provide for a new means of
representing information. The presentation of
information, in some cases incorporating a
variety of media, is impressive. However, the
structure of information in some of these systems
bears little resemblance to traditional documents.
The emphasis has been on the user view of a sin-
gle document, as opposed to searching through
many documents. In particular, issues of multi-
ple users, along with associated security and
transaction problems, have not been addressed.

The Neptune system at Tektronix[15] pro-
vides a server model for a document database.
However, the lowest level of the system is only
concerned with the graph structure of the hyper-
text documents. Other indexing methods, such

as keywords, must be done by higher-level appli-
cations.

There have been experiments in using tradi-
tional, particularly relational, database systems
to manage documents. The SODOS project[16]
uses a relational database to manage documenta-
tion of software systems. Stonebraker et al[17].
have developed a system for representing and
editing documents in INGRES. This requires
some extensions to the database manager. These
techniques do give a "document database", but a
specific structure is provided for information.
Novel methods of structuring text may be
difficult in these systems.

It is interesting to note some of the
differences between our database and relational
systems. There are a number of advantages of
this system for storing documents. Many of these
apply to comparisons with Object-Oriented and
other general purpose databases, as well to the
relational model.
• Pointers are an integral part of the database.

Representing the same information in a rela-
tional d a t a b a s e is difficult (pointers aren ' t
really a part of the document.) In addition,
information can be attached to pointers, and
they can come in different types.

• We provide for long fields. By recognizing that
some fields are more important for searching
than others, we can store long fields separately
from the rest of the document and accept that
these fields will be slower to access. This is
known to the user, who can take this into
account in designing a database schema.

• This is a simple, special purpose database, pro-
viding the minimum functionality needed to
handle large numbers of documents. The sim-
plicity of the model should allow for a more
compact an efficient implementation than a
general purpose database.

• The simplicity of the model limits the number
of reasonable database schemas for a given
application. This will enhance sharing between
databases, as related information is likely to be
represented in similar ways.

Conclusion

We have developed a database manipulation
language specifically designed for documents. It
is capable of expressing complex queries on both
individual documents, and sets of documents.
The structure of information in the database is
highly flexible. The structure of a document, and
what information can be used in queries, is deter-
mined by the application.

This document base operates on the server-
application principle common to production data-
bases. Issues of security and data integrity can
be handled independent of the applications.
Emphasis in the applications can concentrate on

134 ACM CONFERENCE ON DOCUMENT PROCESSING SYSTEMS

presentation of the information.
This document base will ease the design of

hypertext applications. Further research into
novel methods of presenting information will be
able to build on this system. Researchers in
non-technical fields probably have applications
for a document database that computer scientists
would not envision.

Acknowledgements

Some of the ideas described in this paper were
initially developed at Xerox P.A.R.C. in discus-
sions with Jack Kent, Derek Oppen, and the
authors. We would like to acknowledge their
contribution.

R e f e r e n c e s

[1] Michael Stonebraker, Eugene Wong, Peter
Kreps, and Gerald Held, "The Design and
Implementation of INGRES," Transactions
on Database Systems 1(3) pp. 189-222 ACM,
(June 1976).

[2] M. Astrahan, M. Blasgen, D. Chamberlin, K.
Eswaran, J. Gray, P. Griffiths, W. King, R.
Lorie, P. McJones, J. Mehl, G. Putzolu, I.
Traiger, B. Wade, and V. Watson, "System R:
A Relational Approach to Database Manage-
ment," Transactions on Database Systems
1(2) pp. 97-137 ACM, (June 1976).

[3] William Kent, "Limitations of Record-Based
Information Models," Transactions on Data-
base Systems 4(1) pp. 107-131 ACM, (March
1979).

[4] Thomas W. Malone, Kenneth R. Grant,
Kum-Yew Lai, Ramana Rao, and David
Rosenblitt, "Semistructured Messages are
Surprisingly Useful for Computer-Supported
System Coordination," Transactions on Office
Information Systems 5(2) pp. 115-131 ACM,
(April 1987).

[5] D.D. Chamberlin and R. F. Boyce,
"SEQUEL: A Structured English Query
Language," in Proceedings of the SIGMOD
Workshop on Data Description, Access and
Control, ACM (May 1974).

[6] Eric Allman, Michael Stonebraker, and
Gerald Held, "Embedding a Relational Data
Sublanguage in a General Purpose Program-
ming Language," pp. 25-35 in Proceedings of
the Conference on Data: Abstraction,
Definition, and Structure, ACM (March 22-
24, 1976). Also in SIGPLAN Notices 8(2!:II.

[7] J. A. Robinson, "A Machine-Oriented Logic
based on the Resolution Principle," Journal
of the ACM 12 pp. 23-44 (1965).

[8] D.R. Morrison, "PATRICIA -- Practical
Algorithm to Retrieve Information," Journal
of the ACM 15(4) pp. 514-534 (October 1968~.

[9] H. Garcia-Molina, R. J. Lipton, and J.
Valdes, "A Massive Memory Machine," Tran-
sactions on Computers C-33(5) pp. 391-399
IEEE, (May 1984).

[10] Frank G. Halasz, Thomas P. Moran, and
Randall H. Trigg, "NoteCards in a Nutshell,"
in Proceedings of the CHI-I-GI '87 Conference,
ACM, Toronto, Canada (April 5-9, 1987).

[ii] Danny Goodman, "The Two Faces of Hyper-
card," MacWorld, pp. 123-129 (October
1987).

[12] Randall H. Trigg and Mark Weiser,
"TEXTNET: A Network-Based Approach to
Text Handling," Transactions on Office Infor-
mation Systems 4(1) pp. 1-23 ACM, (January
1986).

[13] Norman Meyrowitz, "Intermedia: The Archi-
tecture and Construction of an Object-
Oriented Hypermedia System and Applica-
tions Framework," pp. 186-201 in Object
Oriented Programming Systems, Langauges,
and Applications Conference Proceedings,
ACM, Portland, OR (September 9 - October
2, 1986). Also in Sigplan notices 21(11),
November 1986.

[14] S. Christodoulakis, M. Theodoridou, F. Ho,
M. Papa, and A. Pathria, "Multimedia Docu-
ment Presentation, Information Extraction,
and Document Formation in MINOS: A
Model and System," Transactions on Office
Information Systems 4(4) pp. 345-383 ACM,
(October 1986).

[15] Norman Delisle and Mayer Schwartz, "Nep-
tune: A Hypertext System for CAD Applica-
tions," pp. 132-143 in Proceedings of the SIG-
MOD International Conference on Manage-
ment of Data, ACM, Washington, DC (May
28-30, 1986).

[16] Ellis Horowitz and Ronald C. Williamson,
"SODOS: A Software Documentation Sup-
port Environment -- Its Definition," Transac-
tions on Software Engineering SE-12(8) pp.
849-859 IEEE, (August 1986).

[17] M. Stonebraker, A. Stettner, N. Lynn, J.
Kalash, and N. Guttman, "Document Pro-
cessing in a Relational Database System,"
Transactions on Office Information Systems
1(2) pp. 143-158 ACM, (April 1983).

